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Abstract

The goal of this paper is to search for independent multi-
dimensional processes subject to missing and mixed ob-
servations. The corresponding cocktail-party problem has
a number of successful applications, however, the case of
missing observations has been worked out only for the sim-
plest Independent Component Analysis (ICA) task, where
the hidden processes (i) are one-dimensional, and (ii) signal
generation is independent and identically distributed (i.i.d.)
in time. Here, the missing observation situation is extended
to processes with (i) autoregressive (AR) dynamics and (ii)
multidimensional driving sources. Performance of the solu-
tion method is illustrated by numerical examples.

1. Introduction

Independent Component Analysis (ICA): ‘cocktail party’,

• we have: D speakers (sources), D microphones (sen-
sors),

• observation: mixtures of the independent sources,
• task: recover the original sources from the mixed ob-

servations,

Independent Subspace Analysis (ISA):
• generalization of ICA to multidimensional source com-

ponents: ‘speakers can form groups’ [1].
• one of the most fundamental hypotheses of the ICA re-

search: ISA Separation Theorem ([1]–conjecture, [2]–
proof for certain distribution types):

ISA = ICA + clustering
– forms the basis of the state-of-the-art ISA algorithms,
– makes it possible to efficiently address the case of

unknown source component dimensions.
• promising applications:

– analysis of EEG, fMRI, ECG signals and gene data,
– pattern and face direction recognition.

Goal:
• ‘missing observation’ case: has been addressed only

for the simplest ICA model [3, 4].
• extension to:

– multidimensional source components (ISA),
– non-i.i.d. sources (sources have dynamics).

2. The AR-IPA Model with Missing Observations

mAR-IPA equations: observations (y) are linear mixtures
of independent AR sources (x), available only at certain
coordinates/time instants

st+1 =

L−1∑

l=0

Flst−l + et+1, xt = Ast, yt = Mt(xt), (1)

where

• the driving noises em ∈ R
dm satisfy the ISA assump-

tions (and not sm),
• the unknown mixing matrix A: invertible,
• the AR dynamics F[z] = I −

∑L−1
l=0 Flz

l+1 is stable:
det(F[z]) 6= 0 for all z ∈ C, |z| ≤ 1,

• the Mt ‘mask mappings’: represent the coordinates
and the time indices of the non-missing observations.

Goal: estimate hidden sources (sm) from observations yt.

Special cases: ‘Mt = identity and L = 0’ = ISA, if ‘∀dm = 1
also holds’ = ICA.

3. Method

The mAR-IPA task can be accomplished as follows:
• x is invertible linear transformation of the AR s ⇒ x is AR

with innovation Ae:

xt+1 =

L−1∑

l=0

AFlA
−1xt−l + Aet+1. (2)

•Ae: approximately Gaussian (⇐ d-dependent CLT [5]).

• Estimation (separation technique):

1. identify the partially observed AR process yt,

2. estimate the independent components em from the es-
timated innovation by means of ISA (WISA).

4. Illustrations

Databases:
• ABC dataset: ems were uniform distributions on the im-

ages of the English alphabet (dm = 2, M = 3, D = 6),
see Fig. 1(a),

• 3D-geom dataset: ems were uniformly distributed on 3-
dimensional geometric forms (dm = 3, M = 2, D = 6),
see Fig. 1(b),

• Beatles dataset: sms were 8 kHz sampled portions of
two stereo Beatles songs (A Hard Day’s Night, Can’t
Buy Me Love; (dm = 2, M = 2, D = 4), see http:
//rock.mididb.com/beatles/.

Figure 1: (a): ABC, (b): 3D-geom database.

Performance measure, the Amari-index: ISA ambiguities
[6] ⇒ components of the hidden sources (sm) can only be
recovered up to

• permutation and
• invertible transformation within the subspaces.

Thus, G = WISAA is ideally a block-permutation matrix
made of d × d sized blocks. This property can be mea-
sured by the Amari-index [7, 2]: r(G) ∈ [0, 1], r(G) = 0 ↔
perfect estimation, r(G) = 1 ↔ worst possible.

Simulation parameters:
• performance measure: Amari-index over 10 random

runs (A, F[z], e),
• parameters are:

– T : the sample number of observations yt,
– L: the order of the AR process,
– p: the probability of missing observation (in Mt),
– λ → 1: the (contraction) parameter of the stable poly-

nomial matrix F[z] (Oi: random orthogonal)

F[z] =

L∏

l=1

(I − λOiz) (|λ| < 1, λ ∈ R), (3)

• mixing matrix A: random orthogonal,
• mAR fit:

– maximum likelihood (ML) principle [8], or
– the subspace technique [9], or
– in a Bayesian framework using normal-inverted

Wishart (NIW ) conjugate prior [10].
• ISA subtask: using the ISA separation theorem [2];

– ICA: FastICA [11],
– dependence: kernel canonical correlation [12],
– clustering: greedy, with given d = dm dimensions.

Simulations:
• performance is summarized with notched boxplots:

quartiles (Q1, Q2, Q3), outliers /∈ [Q1−1.5(Q3−Q1), Q3+
1.5(Q3 − Q1)], whiskers–largest/smallest non-outliers.

• Dataset ABC, 3D-geom: L ∈ {1, 2}, 0.1 ≤ λ ≤ 0.99,
p ∈ {0.01, 0.1, 0.15, 0.2, 0.3}, T/1, 000 ∈ {1, 2, 5}.
– Precision: ML > subspace > NIW, see Fig. 3(a),
– Running times: the opposite, see Fig. 3(b),
– Ratio of missing observations (p): ML (p ≤ 0.2 − 0.3),

subspace (p ≤ 0.15 − 0.2), NIW (p ≤ 0.1 − 0.15), see
Fig. 3(a), (c)-(d),

– ML is robust with respect to contraction parameter λ,
see Fig. 3(c)-(j).

• Dataset Beatles: subspace and NIW methods, crude
AR estimation of L = 10 (⇐ Schwarz’s Bayesian Crite-
rion). Results for T = 30, 000 in Fig. 2:
– reasonable estimations up to p = 0.1 − 0.15,
– subspace method: more precise, but somewhat

slower.
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Figure 2: Illustration on the Beatles test (methods: sub-
space, NIW; T = 30, 000, L = 10). Left: Amari-index as a
function of the rate of missing observations p, right: elapsed
time; log scales.
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Figure 3: Illustration on the 3D-geom and ABC datasets.
(a), (b): Amari-index and elapsed time vs. rate of miss-
ing observations p, 3D-geom dataset, log scale, L = 1,
T = 5, 000. (c)-(d): Amari-index, ML method, ABC test,
p = 0.2 and p = 0.3 vs. sample number and AR order, re-
spectively. (e)-(j): illustration of the estimation, ML; L = 1,
T = 5, 000, λ = 0.9; (e) observation before mapping Mt (x).
(g): estimated components (êm) with average Amari-index
for p = 0.01. (f): Hinton-diagram of G for (g)–approximately
a block-permutation matrix with 2× 2 blocks. (h)-(j): like (g),
but for p = 0.1, p = 0.2 and p = 0.3.
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