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Abstract

Relation between a family of generalized Support Vector Machine
(SVM) problems and the novel ǫ-sparse representation is provided.
In defining ǫ-sparse representations, we use a natural generalization
of the classical ǫ-insensitive cost function for vectors. The insensitive
parameter of the SVM problem is transformed into component-wise
insensitivity and thus overall sparsification is replaced by component-
wise sparsification. The connection between these two problems is
built through the generalized Moore-Penrose inverse of the Gram ma-
trix associated to the kernel.
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1 Introduction

Girosi [3] has shown the equivalence of the classic Support Vector Machine
(SVM) regression and the sparse approximation scheme [6], similar to the
Basis Pursuit De-Noising algorithm [2] under the assumption of noiseless
observation. The novelty of the approach is that the approximation is intro-
duced directly in the Reproducing Kernel Hilbert Space (RKHS) and thus
it avoids the empirical estimation of the estimation error. Equivalence is
understood in the sense that the two optimization problems give rise to the
same Quadratic Programming (QP) task.

Equivalence can be shown similarly to [3], but under the condition of
noisy observation for linear and quadratic ǫ-insensitive SVM approximation
costs [5]. The noise process was included into an extended RKHS. In both
cases, however, the ǫ of the approximation cost is transformed onto the scalar
multiplier of the parameter vector, which determines the linear combination
in the approximation. We ask (i) if it is possible to embed the insensitivity
parameter into a constraint on the searched representation, i.e, directly into
the cost function, and (ii) if there is an extension of the SVM problems
characterized by pair (C, ǫ) (where C is the multiplier of the ǫ-insensitive
cost term of the cost function [12, 3]) to more general problems favoring
sparse coding.

The paper is constructed as follows: Section 2 is about the notations
and definitions used throughout this work. In Section 3 we sketch earlier
correspondences between sparse coding and SVM. Section 4 defines the two
generalized problem classes, ǫ-sparse problem class and the corresponding
SVM problem class. These classes will be transformed onto each other in
this section. Conclusions are drawn in Section 5.

2 Notations and Basic Concepts

For the sake of clarity, our notations and the basic concepts are provided.

2.1 Letter Types, Number Sets

Numbers (b), vectors1 (b), and matrices (B) are distinguished from each
other by letter types. Natural number sets are represented by N, that is,

1 Vector means column vector.
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Figure 1: Vapnik’s |v|ǫ ǫ-insensitive cost function. One may think of this
cost function that it represents a resolution not better than ǫ and errors
smaller than ǫ are not detected and give rise to no cost. Errors larger than
ǫ are, however, detected and – for mathematical tractability – make linear
contributions to the cost function.

N := {0, 1, 2, . . .}, whereas R stands for real numbers. Subsets restricted for
positive values are indicated by + sign, e.g., N

+ and R
+.

2.2 Vectors and Matrices

Relations concerning vectors (e.g.,: ≥) are to be meant for each coordinate
separately. The ith component of vector v is denoted by vi, the ijth compo-
nent of matrix V by Vi,j. ǫ-insensitive cost of vectors is defined as

‖v‖r :=
∑

i

|vi|ri
,

where |v|r := {0, if |v| ≤ r; |v| − r, otherwise} is the usual ‘ǫ-insensitive’ cost
function2, which is shown in Fig. 1.

Operations vT , v ◦ z, and V ⊗ Z represent transposition, multiplication
by elements and the Kronecker product, respectively. Symbol 1 has special
meaning, it represents a vector having only 1s, i.e., 1 := [1, . . . , 1]T .

The Moore-Penrose generalized inverse of matrix G ∈ R
n×m is a unique

matrix G− ∈ R
m×n, which has the following features:

GG−,G−G : symmetric matrices (1)

GG−G = G (2)

G−GG− = G−. (3)

2 Notice that r ≡ 0 gives rise to the L1 norm for vectors.
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2.3 RKHS, Feature Mapping, Gram Matrix

Here, we review some basic properties of Reproducing Kernel Hilbert Spaces
(RKHS), necessary for our considerations. For further details, the interested
reader is referred to the literature [12, 11, 1, 4].

An RKHS is denoted by H. We shall select functions from this space to
approximate sample points {xi, yi}i=1..l, where xi ∈ X form the input space
and yi ∈ R (see, e.g, [7]). In space H, the scalar product is computed by
means of kernel k. Kernel k is also used to define the basic functions of the
RKHS: φ(x) := k(·,x) : X→ H. Such functions are called feature mappings
and function φ(x) is interpreted as the representation of x in space H. Now,
the scalar product of feature mappings is defined as

〈φ(s), φ(t)〉
H

= 〈k(·, s), k(·, t)〉
H

= k(s, t) (s, t ∈ X). (4)

It can be shown that the kernel satisfies the following reproducing property

〈f(·), k(·, t)〉
H

= f(t) (t ∈ X, ∀f ∈ H). (5)

This means that k(·, t) can be seen as the evaluation functional at position t

of space H. The Gram matrix of k defined by {x1, . . . ,xl} l-tuples assumes
the following form

G := [Gi,j]i,j=1...l = [k(xi,xj)]i,j=1...l. (6)

2.4 SVM

Function approximation based on sparse data is often hard and is typically
ill-posed [4]: existence, uniqueness and stability conditions may not be met
in these cases. Regularization theory [10] can be of help under these condi-
tions. To solve such problems, Vapnik, in his pioneering works, formulated
the Support Vector Machine (SVM) problem family [12, 11]. In the SVM
problem, the approximating functions are searched in the form

fw,b(x) = 〈w, φ(x)〉
H

+ b, (7)

subject to ǫ-insensitive cost function

V (u, z) = |u− z|ǫ , (8)
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and with regularizer [10] of the form ‖w‖2
H

with norm ‖·‖
H

defined by kernel
k of RKHS H = H(k). Then the SVM task is as follows:

min
w,b

H [w, b] := C

l
∑

i=1

|yi − fw,b(xi)|ǫ +
1

2
‖w‖2

H
(C > 0). (9)

Optimization of Eq. (9) can be executed, e.g., by solving a Quadratic Pro-
gramming (QP) task formulated in the dual space

min
d∗,d

[

1

2
(d∗ − d)T

G (d∗ − d)− (d∗ − d)T
y + (d∗ + d)T

ǫ1

]

(10)

provided that

{

C1 ≥ d∗,d ≥ 0

(d∗ − d)T
1 = 0

}

.

For the derivation, see, e.g., [9]. Here, matrix G is the Gram matrix intro-
duced before.

3 Previous Results

3.1 Noiseless Case

Starting from the work [2] Girosi has formulated a modified sparse approxi-
mation task in RKHS [3]:

min
a





1

2

∥

∥

∥

∥

∥

f(·)−

l
∑

i=1

aik(·,xi)

∥

∥

∥

∥

∥

2

H

+ ǫ ‖a‖
1



 . (11)

The first term is about quadratic approximation but instead of R it is for-
mulated through the norm ‖·‖2

H
on Hilbert space H. The second term is the

sparse constraint, or sparsifying cost term. Girosi has shown that Eq. (11)
is equivalent to the SVM task of Eq. (9) provided that

1. objective f is in H and that 〈f, 1〉
H

= 0,3

2. data are noise-free, that is f(xi) = yi (i = 1, . . . , l),

3 This restriction gives rise to constraint
∑

i

ai = 0.
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3. C →∞.

Equivalence is to be understood in the sense that by breaking the searched
vector a into positive and negative parts, such as

a = a+ − a−, where a+, a− ≥ 0, and a+ ◦ a− = 0 (12)

then the task for pair (a+, a−) is identical to the optimal solution (d∗,d) for
Eq. (10) in the dual QP space.

3.2 The Noisy Case

The solution was extended to the noise case [5]: the connection was formu-
lated for the regression problem and for linear and quadratic ǫ-insensitive
SVM approximation. The equivalence is based on a larger RKHS space,
which encapsulates the noise process, too. For detailed description and for
other similar equivalences, the interested reader is referred to the original
work [5].

In the cited cases [3, 5], the insensitive parameter (ǫ) was transformed
into the multiplier of the sparsifying cost term (compare, e.g., Eq. (9) and
Eq. (11)). Our question is if the constant multiplier of the ǫ-insensitivity loss
can be transformed directly into the different components of the loss func-
tion by generalizing uniform sparsification to a component-wise sparsification
problem.

For notational simplicity, instead of approximating in semi-parametric
form (e.g., f + b, where f ∈ H), we shall deal with the so called non-
parametric scheme [8] (f ∈ H). This approach is well grounded by the
representer theorem [8].

4 Generalized Problems

In this section we shall introduce the generalizations of the previous SVM
and sparse tasks and we shall show that they are equivalent. Given this
equivalence, the two problem family will be referred jointly as ǫ-sparse rep-
resentations.
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4.1 The (c, e)-SVM Task

Below, we introduce an SVM task family, which can be connected to regu-
larization theory and satisfies the conditions of the representer theorem [8].
The usual SVM task – Eq. (9) – is modified as follows:

1. We shall approximate in the form fw(x) = 〈w, φ(x)〉
H

. The representer
theorem warrants that it is satisfactory to approximate in this special
form from H.

2. We shall use approximation errors that may differ for each sample point.

3. We shall use weights that may differ for each sample point.

Introducing vector e for the ǫ-insensitive costs and c for the weights, respec-
tively, the generalized problem has the following form:

min
w

[

l
∑

i=1

ci |yi − fw(xi)|ei
+

1

2
‖w‖2

H

]

(c > 0, e ≥ 0). (13)

This task shall be called the (c, e)-SVM task. The original task of Eq. (9)
corresponds to the particular choice of ((C, ǫ)⊗ 1) and b = 0. Alike to the
original SVM task, the new (c, e)-SVM task also has its quadratic equivalent
in the dual space, which is as follows

min
d∗,d

[

1

2
(d∗ − d)T

G (d∗ − d)− (d∗ − d)T
y + (d∗ + d)T

e

]

, (14)

provided that { c ≥ d∗,d ≥ 0 },

where G denotes the Gram matrix of kernel k that belongs to points xi.

4.2 The (p, s)-Sparse Task

Let us consider the optimization problem

min
a

F [a] :=
1

2

∥

∥

∥

∥

∥

f(·)−
l

∑

i=1

aik(·,xi)

∥

∥

∥

∥

∥

2

H

+
l

∑

i=1

pi |ai|si
(p > 0, s ≥ 0) (15)

on sample points {xi, yi}i=1..l that intends to approximate objective function
f ∈ H(k). This problem shall be referred to as p-weighted and s-sparse task,
or (p, s)-sparse task, for short. The particular choice of ((ǫ, 0)⊗ 1) recovers
the sparse representation form of Eq. (11).
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4.3 Correspondence Between the Tasks

The tasks defined by Eq. (13) and Eq. (15), respectively will be connected
to each other by means of the following theorem:

Theorem 1. Let X denote and arbitrary non-empty set, k be a kernel on X,
{xi, yi}i=1..l a sample set of l elements, where xi ∈ X, yi ∈ R. Assuming that
the values of RKHS objective f ∈ H = H(k) can be observed in points xi

(f(xi) = yi), then under the approximation

fw(x) = 〈w, φ(x)〉
H

the dual problems of the

min
w

[

l
∑

i=1

ci |yi − fw(xi)|ei
+

1

2
‖w‖2

H

]

(c > 0, e ≥ 0)

(c, e)-SVM task and that of

min
a





1

2

∥

∥

∥

∥

∥

f(·)−

l
∑

i=1

aik(·,xi)

∥

∥

∥

∥

∥

2

H

+

l
∑

i=1

pi |ai|si



 (p > 0, s ≥ 0)

the (p, s)-sparse task can be transformed onto each other through the gener-
alized inverse G− of Gram matrix

G := [Gi,j]i,j=1...l = [k(xi,xj)]i,j=1...l,

or, shortly,

Dual [(c, e)–SVM]
G−

←→ Dual [(p, s)–sparse]

under correspondence

(d∗,d,G,y)↔ (d+,d−,G−GG−,G−y) = (d+,d−,G−,G−y).

Proof. We shall modify Eq. (15) under the assumption of f(xi) = yi (i =
1, . . . , l). Given that norm ‖·‖2

H
is induced by a scalar product on H, and

utilizing the bilinear property of scalar products, we have

F [a] =
1

2
‖f‖2

H
−

∑

i

ai 〈f(·), k(·,xi)〉H + (16)

+
1

2

∑

i,j

aiaj 〈k(·,xi), k(·,xj)〉H +
∑

i

pi |ai|si
.
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The reproducing property of the kernel can be applied to show

〈f(·), k(·,x)〉
H

= f(x) = yi, (17)

〈k(·,xi), k(·,xj)〉H = k(xi,xj) = Gi,j, (18)

where the Gram matrix notation was used. Now, neglecting the first term of
F [a], which is independent of a, one has

1

2
aT Ga− yTa +

∑

i

pi |ai|si
→ min

a
. (19)

Then the s-insensitive terms can be rewritten by introducing slack variables
[9] and the following form can be derived

min
a,a+,a−

[

1

2
aT Ga− yTa + pT

(

s+ + s−
)

]

, (20)

provided that







a ≤ s + s+

−a ≤ s + s−

0 ≤ s+, s−







,

with its dual form given as

max
d+,d−,q+,q−≥0

L(d+,d−,q+,q−) = (21)

=
1

2
aT Ga− yTa+pT

(

s+ + s−
)

− (q+)T s+ − (q−)T s− −

−(d+)T (s + s+ − a)− (d−)T (s + s+ + a).

According to the condition on the saddle-point, the derivatives of Langrangian
L taken by the prime variables disappear at optimum, that is

0 =
dL

da
= aT G− yT + (d+ − d−)T , (22)

0 =
dL

ds+
= pT − (d+)T − (q+)T , (23)

0 =
dL

ds−
= pT − (d−)T − (q−)T . (24)

Reordering and transposing Eq. (22), we have

aT G =
(

y − (d+ − d−)
)T

, (25)

Ga =
(

y − (d+ − d−)
)

, (26)
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where the symmetric property of Gram matrix G was exploited. One can
replace matrix G of the Lagrangian by GG−G according to Eq. (2). Also,
considering that

aT Ga = aT (GG−G)a = (aT G)G−(Ga) (27)

one can insert the expressions for aT G and Ga from Eqs. (25) and (26),
respectively. Equations (23) and (24) can also be applied for Lagrangian
L. Variables q+,q− disappear from Lagrangian L, but the non-negativity
conditions Eqs. (23) and (24) give rise to constraints p ≥ d+ and p ≥ d−

for variables d+ and d−. We can also change the minimization of Lagrangian
L to maximization by changing the sign.

Taken together, we have the QP task

min
p≥d+,d−≥0

[

1

2
(y − (d+ − d−))TG−(y − (d+ − d−)) + (d+ + d−)T s

]

. (28)

The terms of the quadratic expression can be expanded and reordered. Upon
dropping terms not containing variables d+ or d−, and making use of the
symmetric property of G− inherited from G, one has

min
p≥d+,d−≥0

[

1

2
(d+ − d−)TG−(d+ − d−)− (d+ − d−)TG−y + (d+ + d−)T s

]

.

(29)
Now, we are in the position to compare this optimization task with Eq. (14)
by making use of the generalized inverse G− of Gram matrix G. The result
is that

Dual[(c, e)–SVM] ↔ Dual[(p, s)–sparse] .

In short, we proved that the two tasks transform onto each other through G−

in the following way

(d∗,d,G,y)↔ (d+,d−,G−GG−,G−y) = (d+,d−,G−,G−y), (30)

where in the last step, property G−GG− = G− of the generalized inverse
(Eq. (3)) was exploited. �
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5 Conclusions

We have extended the concept of sparse representation in RKHSs to a larger
class of tasks, where individual components can have individual sparsifying
terms. We showed that alike to the original sparse formulation, the gen-
eralized ǫ-sparse approach also has an equivalent SVM task family. This
novel formulation may gain applications in signal processing, clustering and
categorization problems.
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