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Joint work




Metropolis Hastings transition kernel

Target w(0) o p(0|D)

At iteration j + 1, state 0y
Propose 6’ ~ q (6]6;))

Accept 041y < 0’ with probability

/ 9 3 9/
i (201 2010 1)
m(0p)  a(@'10()
Reject 0(j11) < 0j) otherwise.
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How to choose g when faced with intractable targets?



Intractable target — running example

Gaussian process classification model on {(x;, y;)}7;
» latent process response f € R” where f; = f(x;)
» labels D =y € {-1,1}"

» hyper-parameters 6

Joint distribution

p(f.y,0) = p(0)p(f10)p(ylf)

» |0 ~ N(0, Kp) with covariance matrix Ky
» p(y|f) =TI/, p(yi|f) is a product of sigmoidal functions



Intractable target — running example

» Interested in posterior parameters

p(0ly) > p(6)p(y|6) = p(6) / ply|F)p(Fl0)df

c.f. Filippone & Girolami (2014), Murray & Adams (2011)
» Unbiased estimate via importance sampling:

1 X plyfD)p(FP]9)
nimp i=1 Q(f(l))

with f() ~ Q(f), which is obtained via e.g. EP

» Instance of pseudo-marginal MCMC
[Beaumont, 2003], [Andrieu & Roberts, 2009], ...
[Lyne et. al 2015]

p(y|0) ~

No access to likelihood, gradient, or Hessian of p(f|y)



Intractable target — running example

Induces nonlinear posterior on standard classification tasks



Learning covariance

v

[Haario et al., 1999] learn covariance on the fly
Given Markov chain at state 6;), then for A, € (0, 1), set

v

Y= (1= X))o+ A (0n0y)
and use proposal

q(-10t)) = N (-6, X¢)

v

Careful when g depends on {f;)}i<:

v

Can choose A; s.t. £; — Cov(m) as t — oo under some
assumptions on 7 [Andrieu, 2008]



Adaptive Metropolis [Haario et al., 1999]

Improves mixing but is
locally miscalibrated for strongly nonlinear targets



Learning kernel covariance [Sejdinovic et al., 2012

Input space X eature space H

Feature space sample



The Kameleon [Sejdinovic et al., 2012]

Learned kernel covariance allows to
» propose locally aligned moves
» improved mixing on nonlinear targets

» without the need for gradients



This talk: learning gradients

Gradients allow to
» propose distant moves with
» high acceptance probability
» in high dimensions

=ssignificant mixing improvements



Hamiltonian dynamics 101

v

Potential energy U(q) = —log7(q)

Momentum p ~ exp(—K(p)), K(p) = —3p"p

v
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Hamiltonian

H(p,q) == K(p) + U(q)
» H-Flow is map
or = (p.q) = (p"q")

s.t. H(p*,q*) = H(p, q) Vt
Acceptance probability along flow is 1.
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Generated by operator:
0Ko U
Opdq 0qdp



Exponential families in kernel spaces

v

Need a surrogate density model to model gradient
Kameleon used Gaussian in RKHS H
» Here: exponential family [Sriperumbudur at al., 2014]

v

7(0) ~exp | (f,k(0,))y —A(f)
~——

=£(6)
» For certain k, dense in probability densities (KL, TV, ...)
» Crux: fitting — normalising constant A(f) is intractable

A(F) = log / exp(F(0))d0

v

Maximum likelihood ill-posed, c.f. [Fukumizu, 2006]



Score
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matching [Hyvarien, 2005]

Instead of ML, minimise Fisher divergence

arg min %/7?(9) |Vof(0) — Vg log 7r(9)||§ df

feH

Intuition: match gradients in high density regions

Remarkable: can rewrite and estimate from {0;}7_; ~ 7

argmm;ZZ [828][92 (agéf)) ]

feH

Can be minimised in closed form. Reduces to regression.

In practice much more robust than KDE.



Hamiltonian moves without gradients

-3 —2
0

Kernel induced Hamiltonian flow:

0K O _0f 0
Op0dq 0qdp



Kernel HMC [Strathmann et al., 2015]

Start as random walk, transition to HMC.

Every iteration:
» Learn/update gradient model using past trajectory
» Use surrogate gradient to simulate Hamiltonian dynamics

» Correction for simulation error and gradient error:
MH accept/reject step using estimator for 7

» Stop adapting eventually

=-Asymptotically correct, given a certain setup.



Computational considerations

Acceptance prob.
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Bad fit = low acceptance rate = inefficient. But...

Gradient model expensive to fit to Markov chain {6;}}_;:
» O(t3d3) time
» O(t?d?) memory

Markov chain trajectory length t grows

Aim is 'high’ dimension d

v

v
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One approximation: KMC Lite

Geometrically ergodic on
log-concave targets.

f(0) = Z aik(z;, 0)

Gradient norm:
Gaussian
» {z}", C{6;}}_; sub-sample

» o € R"” from

Gy = —%(c +M)71h

where C € R™" b e R" KMC Lite

depend on kernel matrix

» Cost O(n® + n?d) (modulo
low-rank, CG).




Geometric ergodicity intuition
MCMC chain visits 'interesting’ parts

» geometrically fast
» in particular when initialised in tails

» means: same guarantees as RWM

Proof idea
» In KMC lite, we have for ||g|| — oo

f(q) = Zaik(zf, q) = exp(—||z: —ql[) = 0

» Recall kernel H-flow is generated as
oK 0 0Of 0
9pdq  dqop
» KMC lite falls back to random walk, which is geo. erg.



Why do we care?

Early adaptation stopping is potentially harmful...
But we need to for asymptotic correctness!

&




Why do we care?

Imagine we stopped adaptation early...
with a bad fit.




Why do we care?

KMC lite falls back to random walk in 'the dark’




Acceptance rate in high dimensions

Challenging Gaussian (top): -
» Eigenvalues: \; ~ Exp(1). =
» Covariance: diag(\y, ..., \qg),
randomly rotate.
» ‘Non-singular’ length-scales
» KMC scales up to d ~ 30.

10?

Isotropic Gaussian (bottom):

= 10I
» More smooth

» KMC scales up to d ~ 100.

10°




KMC asymptotically behaves as HMC

8-dimensional strongly nonlinear snythetic banana

Minimum ESS

30 || — HMC

Acc. rate
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KMC improves mixing
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MMD from ground truth

1 \ 1
0 1000 2000 3000 4000 5000

10%

Iterations



Kernel sequential Monte Carlo

[Schuster & Strathmann et al., 2016]
Nonlinear versions of

» Adaptive Sequential Monte Carlo [Fearnhead et al., 2010

» Feature space covariance

Gradient free versions of
» Gradient Importance Sampling [Schuster et al., 2015]
» Hamiltonian Importance Sampling [Naesseth et al., 2016]

Context:

» Intractable likelihoods, nested importance sampling
» 1S2/SMC2 [Tran et al., 2013; Chopin et al., 2013]



Discussion

Kernel models as density emulators for Monte Carlo
» Covariance [Sejdinovic et al., 2012]
» Gradients [Strathmann et al., 2015]
» Leads to mixing improvements in practice

» Useful for intractable targets

The crucial trade-offs:
» Parameter selection
» Adaptation
» Computational costs

» Growing dimensions



Thank you

Questions?



