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Motivation: Hamiltonian Monte Carlo and Intractable Targets

Infinite dimensional exponential families [6]

Stability in growing dimensions

» Goal: Efficient sampling from density 7 on RY.
» HMC proposes distant moves with high acceptance probability.

» Given potential energy U(q) = — log 7w(q), sample auxiliary momentum
p ~ exp(—K(p)) and simulate for t € R along Hamiltonian flow

o+ (p,q) = (p*,q")
of the joint log-density H(p, q) = K(p) + U(q), using the operator
oK 0 0U 0
Op 0q a 0q Op

» Numerical simulation (i.e. leapfrog) depends on gradient information.

» Often unavailable, e.g. in Bayesian GP classification. More generally in
Pseudo-Marginal MCMC [1] or Approximate Bayesian Computation [4].

» Right: Marginal hyper-parameters of a GP classifier. HMC dynamics?

We want a HMC sampler that automatically learns gradients.

So far: (Kernel) Adaptive Metropolis-Hastings

|dea: use history of Markov chain to learn target structure.
Adaptive Metropolis-Hastings [2]
» Learns global linear covariance.
» Pro: Automatically learns proposal scaling, fast.
» Con: Local steps, does not work well on non-linear targets.

Kernel Adaptive Metropolis Hastings [5]

» Learns covariance in RKHS.

» Pro: Locally aligns to (non-linear) target covariance, gradient free.
» Con: Local steps, random walk.

Can we combine ‘global’ and ‘non-linear’ — without gradients?

Hamiltonian Monte Carlo with kernel induced potential energy

» Learn gradient ‘surrogate’ model VU, ~ VU = —V log 7 from Markov chain history {x; le.

» Replace %—g by %—%"; gives kernel induced Hamiltonian flow gbf’k (P, q) — (pg, q;)

H : :
» ¢, * can be simulated using the operator

0K 0 B oUy 0
OpOdqg Oq Op
» Accept using true Hamiltonian (depends on U but not on V U) with probability
min [1,exp (—H (pk. ak) + H(p. q))]

» Corrects for both leap-frog error and surrogate induced Hamiltonian flow error = Asymptotically correct.
» Note: exp(U(q)) can be replaced with unbiased estimator, c.f. Pseudo-Marginal MCMC.

Key quantity: average gradient error /W(X)HVU(X) — VUi(x)||5dx

lllustration of kernel induced Hamiltonian flow
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» Standard HMC dynamics using VU
(plot shows gradient norm ||V U]|).
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» Dynamics on kernel surrogate V Uy,
fitted from samples.

We need an expressive yet tractable model.

(Unnormalised) exponential family model in a RKHS:
const x m(x) = exp ({f, k(x, -))y — A(f))

» Sufficient statistics: feature map k(-, x) € H, satisfies f(x) = (f, k(x,-))y for any f € H.
» Natural parameters: f € H.
» Normalising constant A(f) is intractable.

The model is

» dense in continuous densities on compact domains (in TV, KL, etc.),
» relatively robust to increasing dimensions, as opposed to e.g. KDE.

How to learn f from samples without access to A(f)?

Score matching [3] An easy, isotropic Gaussian target (bottom):

» Allows estimation of unnormalised density models from samples.
» Minimises Fisher divergence (precisely the average gradient error):

() =5 [ 7) IVFx) = ¥ log () 3

> Possible without accessing V log (x), and accessing 7(x) only through samples: x := {x;}}_;

. 1 & [82F(x) 1 /0F(x)\?
J(f)zmzz 8x€2 —|—§< an>
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Expensive: Closed form full solution requires solving (td + 1)-dimensional linear system.

Approximation |I: KMC Lite

Assume that the model takes the form (Gaussian kernel k with bandwidth o)

n
flite(X) = Y ajk(zj, x)
i=1

»Z C x is a random sub-sample, o € R” are real valued parameters.
» Solution f1ite lies in smaller RKHS sub-space than original model, yet grows with n < t.

| » Compute o from linear system

&y = —%(C VY

where C € R™" b € R" depend on kernel matrix, and A > 0.
» Costs O(n3 + n2d). Can further reduce with low-rank approximations and conjugate gradient.

Approximation Il: KMC finite

Assume that the model takes the form
ffinite(x) — 9T¢X

» x € R™ is approximate feature map such that gbjgby ~ k(x,y), c.f. Random Fourier Features.
» 0 € R™ can be computed from

0y = (C+A)"1h

where
1 t d , 1 t d , , T
b= —— m g ( ) mocm
LSS dern oty (i) er
i=1 (=1 i=1 (=1
2

where ¢£ = %gbx and gbﬁ = ngx and A > 0.
(

» C, b are running averages. On-line updates cost O(dm?).

Lite vs. Finite: geometric ergodicity & the tails

» KMC lite is geometrically ergodic on log-concave targets (fast convergence).

» KMC finite updates fast and uses all Markov chain history. Caveat: need to initialise correctly.
KMC Lite KMC Finite

» Gradient norm of a Gaussian
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» Fit surrogate on n oracle samples, increase d and n.
» Compute acceptance rate along random HMC trajectories.
» Small step-size, optimal value is 1.

» Red: KMC efficient, blue: KMC inefficient.

A challenging Gaussian target (top):
» Eigenvalues: \; ~ Exp(1).

» Covariance: diag(\1, ..., Ay), randomly rotate.

» Use Rational Quadratic kernel to account for resulting highly
‘non-singular’ length-scales.

» KMC scales up to d ~ 30.

» More smoothness allows KMC to scale up to d ~ 100. n

Mixing on synthetic 8-dimensional Banana [5]
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KMC behaves like HMC as number n of oracle samples increases.

Gaussian Process Classification on UCI data

» Standard GPC model

p(F,y,0) = p(0)p(F|0)p(y|f)
where p(f|6) is a GP and with a sigmoidal likelihood p(y|f).

» Goal: sample from p(f|y) o< p(6)p(y|0).
» Unbiased estimate of p(y|f) via importance sampling.

MMD from ground truth

0 1000 2000 3000 4000 5000

Iterations

» No access to likelihood or gradient.

Significant mixing improvements over state-of-the-art.

Approximate Bayesian Computation on a Skew-Normal model

» Likelihood free MCMC for ABC via
simulation from likelihood.

» Can fit (Gaussian) synthetic likelihoods.
» This often induces bias, simple example:

p(y[6) = 2N (y|6. 1) & (aTy)

with Gaussian CDF ® and skewness
a=10-1".

Autocorrelation

Compared to Hamiltonian ABC
(gradients by stochastic finite differences):
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» KMC uses surrogate for ABC posterior.
» No synthetic likelihood.
» No stochastic gradients.

No additional bias and reduced number of likelihood simulations.
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