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Manifold Learning

Learning in high-dim. space is hard and expensive.
Good news: intrinsic dimensionality is often low.

Observations lie on a low-dim. manifold embedded in a high-dim. space.

Manifold learning: uncover the low-dim. manifold structure.

Our Goal

Recover data manifold in a Bayesian probabilistic way, while
preserving geometric properties of local neighbourhoods.

Advantages:
Fully probabilistic. Uncertainty estimates available.
Principled way to evaluate manifold dimensionality.
Learned model can handle unseen data points naturally.

Our Approach: LL-LVM

Assume a locally linear mapping between tangent spaces in low and high
dimensional spaces
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Input: neighbourhood graph G = [ηij] with binary adjacency indicator
ηij = 1 if points i, j are neighbours.
Find posterior distribution p(C,x|y,G) over the linear maps
C = [C1, · · · ,Cn] and the latent variables x = [x1

>, · · · ,xn>]> ∈ Rndx.
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Joint distribution:

p(y,C,x|G) = p(y|C,x,G)p(C|G)p(x|G).

Prior on latent x: assume neighbouring points are similar,

p(x|G, α) = N (0,Π) ∝ −1
2

n∑
i=1

α||xi||2 + n∑
j=1

ηij||xi − xj||2
 ,

where α controls the expected scale, Π−1 = αIndx + Ω−1, Ω−1 = 2L⊗ Idx
and L = diag(G1)−G.

Prior on linear maps: matrix normal,

p(C|G,U) =MN (0,U,Ω), where E[CC>] ∝ U, E[C>C] ∝ G.

Likelihood: penalise the approximation error,

p(y|C,x,V,G) = N (µy,Σy)

∝ −1
2

n∑
i=1

n∑
j=1

ηij((yj − yi)−Ci(xj − xi))
>V−1((yj − yi)−Ci(xj − xi)),

where V−1 = γI and γ is to be learned.

Variational EM

Maximising log marginal likelihood is intractable. Maximise lower bound F instead

log p(y|G,θ) ≥
∫∫

q(C,x) log
p(y,C,x|G,θ)

q(C,x)
dxdC := F(q(C,x),θ).

For computational tractability, assume q(C,x) = q(x)q(C).
Variational expectation maximisation (EM) algorithm:

E-step for computing q(C,x) by

q(x) ∝ exp

[∫
q(C) log p(y,C,x|G,θ)dC

]
= N (x|µx,Σx),

q(C) ∝ exp

[∫
q(x) log p(y,C,x|G,θ)dx

]
= N (c|µc,Σc).

M-step for learning θ = {α,U, γ},
θ̂ = argmax

θ
F(q(C,x),θ).

Illustration 1: Mitigating Short-Circuiting Problems
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Figure : (A) Two datapoints seem close to each other, (B) but actually far in 2D space. (C) Short-circuiting the
two datapoints lower the lower bound.

The lower bound F can be used to evaluate a hypothesised neighbourhood structure.

Illustration 2: Modelling USPS Handwritten Digits
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Figure : (A): Variational lower bound with different k’s (#neighbours). (B): Posterior mean of x by LL-LVM.
(F): 1-NN classification error on test data using the inferred x.

Classification with LL-LVM coordinates outperforms GP-LVM and LLE, and matches
ISOMAP.

Illustration 3: Mapping Climate Data

Goal: Recover 2D geographical relationships between weather stations.
yi = 12-dim. vector of monthly precipitation measurements at a weather station.
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(a) 609 weather stations (b) LLE (c) LTSA

(d) ISOMAP (e) GP-LVM (f) LL-LVM

The projection obtained from LL-LVM recovers the topological arrangement of the stations to
a large degree.

Gaussian Process Latent Variable Model (GP-LVM)[1, 2]

Define a mapping from latent X to data Y using GP.
For data Y = [y1, . . . ,ydy] ∈ Rn×dy and latents X = [x1, . . . ,xdx] ∈ Rn×dx,

p(Y|X) =

dy∏
k=1

N (yk|0,K + β−1In),

where the i, jth element of the covariance matrix is

k(xi,xj) = σ2f exp
[
−1

2

∑dx
q=1αq(xi,q − xj,q)2

]
, and αq’s determine dimensionality of latent

space.
Limitations:

No preservation of local neighbourhood properties
Smoothness of manifold constrained by pre-chosen covariance function.
Use auxiliary variable for variational inference. Restrict the choice of covariance function.

Relationship of LL-LVM and GP-LVM

Integrating out C from likelihood yields

p(y|x,G,θ) =

∫
p(y|C,x,G,θ)p(C|G,θ)dC =

1

ZYy
exp

[
−1
2
y> K−1LL y

]
.

In contrast to GP-LVM, the precision matrix K−1LL is directly determined by the graph structure
given the observations.

K−1LL = (2L⊗V−1)− (W ⊗V−1) Λ (W> ⊗V−1),

where W is a function in x and L and Λ is a function in x>x and L.

Conclusion

A new probabilistic approach to manifold learning preserving local geometries in data and
equipped with straightforward variational inference.
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