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Challenges in functional output regression

e Regression when the target variable is a function [Kad+16], in
presence of outliers
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Challenges in functional output regression

Square loss fails to handle outliers.

Go beyond the square loss in functional output regression
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Challenges in functional output regression

Square loss fails to handle outliers.

Goal
Go beyond the square loss in functional output regression

Key idea: use convoluted losses [Laf+20] of the form
L= 1P

where g is to be designed to capture outliers or impose
sparsity
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Regularized empirical risk minimization

Regularized empirical risk minimization in vw-RKHSs:

n
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Regularized empirical risk minimization

Regularized empirical risk minimization in vw-RKHSs:
1 b
inf = > L — h(xp) + 5 1Kl

n 4
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e Modelization choice (y,)_, € Y := L?[©, ]
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Regularized empirical risk minimization

Regularized empirical risk minimization in vw-RKHSs:
1 b
inf = > L — h(xp) + 5 1Kl

n 4
hEg'CK [

e Modelization choice (y,)_, € Y := L?[©, ]
e Suitable kernel: K = Ry - Ty, where

+ kRy: X x X — R scalar-valued kernel on input data
* ke: © x © — R scalar-valued kernel

- Tro € £(Y) integral operator associated to ke
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Exploiting duality with convoluted losses

Why convoluted losses: easy Fenchel-Legendre conjugate

1.2 R T R
(1H5ea) =3B +a
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Exploiting duality with convoluted losses

Why convoluted losses: easy Fenchel-Legendre conjugate

1.2 R T R
(1H5ea) =3B +a

yZ [ ol = o iy + 9° (@)

Dual problem:

n
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7} 1

with estimator h = &= 37, R (-, X)) Trg .
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Exploiting duality with convoluted losses

Why convoluted losses: easy Fenchel-Legendre conjugate

1.2 R T R
(1H5ea) =3B +a

yZ [ ol = o iy + 9° (@)

Dual problem:

(o ,”
Z I?x XHXJ <O‘I>Ti?@aj>1j
7} 1
with estimator h = &= 37, R (-, X)) Trg .
Challenges: representing «;, computability
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The extended Huber loss

Huber loss with parameters (k = 0,p € [1,4+0]):
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He =S IHly e w1l
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The extended Huber loss

Huber loss with parameters (k = 0,p € [1,4+0]):

T2
He =S IHly e w1l

Fenchel conjugate of p-norm is indicator of g-ball:
=1

Il = ¢ga(-) where —+

o=
Q=
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The extended Huber loss

Huber loss with parameters (k = 0,p € [1,4+0]):

T2
He =S IHly e w1l

Fenchel conjugate of p-norm is indicator of g-ball:
=1

Il = ¢ga(-) where —+

o=
Q=

Dual problem becomes

n n
. 1 1
D3 3 el = ainydy | + i D) i) Troerdy
ij=1

st llaill, <k, T<i<n
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Approximate problem

Representation choice for a;: linear splines with anchors
(9,~/~)}m:1 ii.d. as p

- Easy parameterization: vector in R™
- Suitable with Monte-Carlo approximation
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Approximate problem

Representation choice for a;: linear splines with anchors
(05)2; i.id. as p

- Easy parameterization: vector in R™

- Suitable with Monte-Carlo approximation

Approximate problem

1
2nm

1
inf Tr(AAT——AYT—%
AcRN*m 2

KxAK@AT>

1
st [[Allgeo < Mik

with estimator

,] n m
h =D, > aike (o Xi)ke (-, 6))

i=1j=1
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Optimization algorithm

"Smooth + nonsmooth” optimization problem solvable with
proximal gradient descent
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Optimization algorithm

"Smooth + nonsmooth” optimization problem solvable with
proximal gradient descent

Amounts to knowing how to project on g-balls
proxLBgc = Prosz

Closed-form available when g € {2, +0}, corresponding to
initial choices p € {1,2}
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Contamination scenario

Diversity of outliers in the functional setting

- Local: only a few measurements are compromised

- Global: the whole function is corrupted
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Contamination scenario

Diversity of outliers in the functional setting

- Local: only a few measurements are compromised

- Global: the whole function is corrupted
Experimental setup:

- Contaminate a synthetic dataset
- Learn with losses  [|-[[3, HL, H?

- Compare with NMSE metric

1T G .
NMSE := —— > > [yi(6;) — i(6)))°
i=1j=1
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Experimental results
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Take home message

- In high dimension, extending the Huber loss with
p-norms allows to be robust to a larger class of outliers

10/10



References i

References

@ Hachem Kadri et al. “Operator-valued Kernels for Learning from
Functional Response Data”. In: Journal of Machine Learning
Research 17.20 (2016), pp. 1-54 (cit. on p. 2).

@ Pierre Laforgue et al. “Duality in RKHSs with Infinite
Dimensional Outputs: Application to Robust Losses”. In:
International Conference on Machine Learning (ICML). 2020,
pp. 5598-5607 (cit. on pp. 3, 4).

10/10



	References

