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Goal
Go beyond the square loss in functional output regression to better

handle outliers and sparsity
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Input space X, output space Y := L2[Θ, µ] where Θ ⊂ R compact. Build

h : X → Y

Proposed loss functions
Typical loss function: square loss L(f) = 1

2 ∥f∥
2
Y = 1

2

∫
Θ
f(θ)2dµ(θ). [2]

• Sensible to outliers, no sparsity

Key idea: use a loss obtained with infimal convolution

L =
1

2
∥·∥2Y □ g,

where g is a well-chosen function that enforces robustness or sparsity. Suited
to dual approaches as Fenchel-Legendre conjugate is(

1

2
∥·∥2Y □ g

)⋆

=
1

2
∥·∥2Y + g⋆.

Leverage p-norms for flexible choice of g, where p ∈ [1,+∞]. Denoting q
the conjugate exponent ( 1p + 1

q = 1), ιC(·) the indicator function of a convex
set C, and Bp

κ the p-ball of radius κ in Y,
Extended Huber loss (κ ≥ 0):

Hp
κ :=

1

2
∥·∥2Y □κ ∥·∥p , (Hp

κ)
⋆
=

1

2
∥·∥2Y + ιBq

κ
(·).

Extended ϵ-insensitive loss (ϵ ≥ 0):

ℓpϵ :=
1

2
∥·∥2Y □ ιBp

ϵ
(·), (ℓpϵ )

⋆
=

1

2
∥·∥2Y + ϵ ∥·∥q .

Dual Formulation in vv-RKHSs
Extension of kernel methods to handle vector-valued outputs. [1]

• kX : X× X → R and kΘ : Θ×Θ → R two scalar-valued kernels

• TkΘ
∈ L(Y) the integral operator associated to kΘ

• K = kX · TkΘ with vv-RKHS HK

inf
h∈HK

1

n

∑
i∈[n]

L(yi − h(xi)) +
λ

2
∥h∥2HK

, λ > 0

Dual problem for L = 1
2 ∥·∥

2
Y □ g reads [3]

inf
(αi)i∈[n]∈Yn

∑
i∈[n]

[
1

2
∥αi∥2Y − ⟨αi, yi⟩Y + g⋆(αi)

]
+

1

2λn

∑
i,j∈[n]

kX(xi, xj) ⟨αi, TkΘ
αj⟩Y .

Challenges: (αi)
n
i=1 are functions and need suitable representation that

ensures computability of proximal operator of g⋆ and all other quantities.

Optimization
Representing the dual variables: we choose a linear splines representation
for the (αi)

n
i=1 based on some fixed anchors (θij)i,j∈[n]×[m] distributed

i.i.d. as µ. This allows for a finite dimensional encoding of the dual variables
in a matrix A of size n×m with aij = αi(θij).

Computing the objective function: The different terms are computed using
Monte-Carlo approximation with the anchors (θij)i,j∈[n]×[m].

Composite optimization problem: Because g⋆ is non-smooth, we consider
accelerated proximal gradient descent. For the Huber loss, the proximal step
amounts to projecting on some q-ball which is tractable when q ∈ {2,+∞}.
For the ϵ-insensitive loss, it corresponds to a soft thresholding operator when
q = 1 and a block soft thresholding operator when q = 2.

Overall estimator: Once the matrix A is known, the estimator reduces to

h(x)(θ) =
1

λnm

∑
i∈[n]

kX(x, xi)
∑
j∈[m]

aijkΘ(θ, θj).

Robustness experiments
Experimental setup: kX, kΘ are Gaussian kernels, we contaminate a syn-
thetic dataset using two kind of outliers: local (only a few measurements of
the function are corrupted) or global (the function is entirely replaced).
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We can see that H2
κ struggles against local outliers, whereas H1

κ shows good
robustness properties.

Sparsity experiments
We show that a compromise can be made between the two parameters λ and ϵ
to get increased sparsity with little degradation of the performance.
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Code Available
https://github.com/allambert/foreg
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