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Goal

Go beyond the square loss in functional output regression to better
handle outliers and sparsity
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Input functions (x;

Input space X, output space Y := L?[O, u| where © C R compact. Build

h: X —Y

Proposed loss functions

Typical loss function: square loss L(f) = = HfH% = 5 [o [(0)*du(9). [2]

* Sensible to outliers, no sparsity

Key idea: use a loss obtained with infimal convolution
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where g 1s a well-chosen function that enforces robustness or sparsity. Suited
to dual approaches as Fenchel-Legendre conjugate 1s
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Leverage p-norms for flexible choice of g, where p € |1, +00]. Denoting ¢
the conjugate exponent (% + % = 1), tc(-) the indicator function of a convex
set C, and B the p-ball of radius < in Y,

Extended Huber loss (v > 0):
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Extended c-Insensitive loss (¢ > 0):
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Exploring the Huber and e-insensitive Losses

A. Lambert’™, D. Bouche', Z. Szabé®. F. d’ Alché-Buc'
T LTCI, Télécom Paris. x ESAT, KU Leuven. & Department of Statistics, London School of Economics.

Dual Formulation in vv-RKHSs

Extension of kernel methods to handle vector-valued outputs. [1]

¢ kx: X XX — Rand kg: © x © — R two scalar-valued kernels

o Ti. € L£(Y) the integral operator associated to kg

o K = kv - Tk@ with vv-RKHS H g

A
" Ly — hiw) + 5 Rl A>0

1€ [n]

, 1
inf —
heHig N

Dual problem for L = £ HH% g reads [3]
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Challenges: («;):; are functions and need suitable representation that
ensures computability of proximal operator of g* and all other quantities.

Optimization

Representing the dual variables: we choose a linear splines representation
for the (a;);; based on some fixed anchors (0;;); jcin]x[m] distributed
1.1.d. as . This allows for a finite dimensional encoding of the dual variables
in a matrix A of size n x m with a;; = a;(0;;).

Computing the objective function: The different terms are computed using
Monte-Carlo approximation with the anchors (0;;); jcn]x [m]-

Composite optimization problem: Because ¢g* is non-smooth, we consider
accelerated proximal gradient descent. For the Huber loss, the proximal step

amounts to projecting on some ¢-ball which is tractable when ¢ € {2, 400}

For the e-insensitive loss, it corresponds to a soft thresholding operator when
g = 1 and a block soft thresholding operator when ¢ = 2.

Overall estimator: Once the matrix A is known, the estimator reduces to

Z ]ij(w,{[)z) Z aijk@(e,é’j).
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Robustness experiments

Experimental setup: £k, kg are Gaussian kernels, we contaminate a syn-
thetic dataset using two kind of outliers: local (only a few measurements of
the function are corrupted) or global (the function 1s entirely replaced).
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We can see that H? struggles against local outliers, whereas H! shows good
robustness properties.

Sparsity experiments

We show that a compromise can be made between the two parameters A and €
to get increased sparsity with little degradation of the performance.
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Code Available

https://github.com/allambert/foreqg
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