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Abstract
When considering simultaneously a finite num-
ber of tasks, multi-output learning enables one to
account for the similarities of the tasks via appro-
priate regularizers. We propose a generalization
of the classical setting to a continuum of tasks by
using Vector-Valued Reproducing Kernel Hilbert
Spaces.

1. Introduction
Several fundamental problems in machine learning and
statistics can be phrased as the minimization of a loss func-
tion described by a hyperparameter. The hyperparameter
might capture numerous aspects of the problem: (i) the
tolerance w. r. t. outliers as the ε-insensitivity in Support
Vector Regression (Vapnik et al., 1997), (ii) importance
of smoothness or sparsity such as the weight of the l2-
norm in Tikhonov regularization (Tikhonov & Arsenin,
1977), l1-norm in LASSO (Tibshirani, 1996), or more gen-
eral structured-sparsity inducing norms (Bach et al., 2012),
(iii) Density Level-Set Estimation (DLSE), see for example
one-class support vector machines One-Class Support Vec-
tor Machine (OCSVM, Schölkopf et al., 2000), (iv) confi-
dence as exemplified by Quantile Regression (QR, Koenker
& Bassett Jr, 1978), or (v) importance of different de-
cisions as implemented by Cost-Sensitive Classification
(CSC, Zadrozny & Elkan, 2001). In various cases including
QR, CSC or DLSE, one is interested in solving the param-
eterized task for several hyperparameter values. Multi-Task
Learning (Evgeniou & Pontil, 2004) provides a principled
way of benefiting from the relationship between similar
tasks while preserving local properties of the algorithms: ν-
property in DLSE (Glazer et al., 2013) or quantile property
in QR (Takeuchi et al., 2006).

A natural extension from the traditional multi-task setting is
to provide a prediction tool being able to deal with any value
of the hyperparameter. In their seminal work, (Takeuchi
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et al., 2013) extended multi-task learning by considering
an infinite number of parametrized tasks in a framework
called Parametric Task Learning (PTL). Assuming that the
loss is piecewise affine in the hyperparameter, the authors
are able to get the whole solution path through parametric
programming, relying on techniques developed by Hastie
et al. (2004).

In this paper1, we relax the affine model assumption on
the tasks as well as the piecewise-linear assumption on
the loss, and take a different angle. We propose Infinite
Task Learning (ITL) within the framework of function-
valued function learning to handle a continuum number
of parameterized tasks using Vector-Valued Reproducing
Kernel Hilbert Space (vv-RKHS, Pedrick, 1957).

2. Problem Formulation
After introducing a few notations, we gradually define our
goal by moving from single parameterized tasks to ITL
through multi-output learning.

A supervised parametrized task is defined as follows. Let
(X,Y ) ∈ X × Y be a random variable with joint distribu-
tion PX,Y which is assumed to be fixed but unknown; we
also assume that Y ⊂ R. We have access to n independent
identically distributed (i. i. d.) observations called training
samples: S:=((xi, yi))

n
i=1 ∼ P⊗nX,Y . Let Θ be the domain

of hyperparameters, and vθ:Y × Y → R be a loss function
associated to θ ∈ Θ. Let H ⊂ F (X ; Y) denote our hy-
pothesis class; throughout the paper H is assumed to be a
Hilbert space with inner product 〈·, ·〉H. For a given θ, the
goal is to estimate the minimizer of the expected risk

Rθ(h):=EX,Y [vθ(Y, h(X))] (1)

over H, using the training sample S. This task can be
addressed by solving the regularized empirical risk mini-
mization problem

min
h∈H

RS
θ(h) + Ω(h), (2)

where RθS(h):= 1
n

∑n
i=1 vθ(yi, h(xi)) is the empirical risk

and Ω : H → R is a regularizer. Below we give two
examples.

1This paper is a short version of (Brault et al., 2019)
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Quantile Regression: In this setting θ ∈ (0, 1). For a
given hyperparameter θ, in Quantile Regression the goal
is to predict the θ-quantile of the real-valued output condi-
tional distribution PY |X . The task can be tackled using the
pinball loss (Koenker & Bassett Jr, 1978) defined in Eq. (3).

vθ(y, h(x)) =
∣∣θ − 1R−(y − h(x))

∣∣|y − h(x)|, (3)

Ω(h) = λ
2 ‖h‖

2
H, λ > 0.

Density Level-Set Estimation: Examples of parameter-
ized tasks can also be found in the unsupervised setting.
For instance in outlier detection, the goal is to separate out-
liers from inliers. A classical technique to tackle this task
is OCSVM (Schölkopf et al., 2000). OCSVM has a free
parameter θ ∈ (0, 1], which can be proven to be an upper
bound on the fraction of outliers. This unsupervised learning
problem can be empirically described by the minimization
of a regularized empirical risk RSθ(h, t) + Ω(h), solved
jointly over h ∈ H and t ∈ R with

vθ(t, h(x)) = −t+
1

θ
|t− h(x)|+, Ω(h) = 1

2‖h‖
2
H.

In the aforementioned problems, one is rarely interested in
the choice of a single hyperparameter value (θ) and associ-
ated risk

(
RS

θ
)

, but rather in the joint solution of multiple
tasks. The naive approach of solving the different tasks in-
dependently can easily lead to inconsistencies. A principled
way of solving many parameterized tasks has been cast as
a MTL problem (Evgeniou et al., 2005) which takes into
account the similarities between tasks and helps providing
consistent solutions. For example it is possible to encode
the similarities of the different tasks in MTL through an
explicit constraint function (Ciliberto et al., 2017). In the
current work, the similarity between tasks is designed in
an implicit way through the loss function and the use of
a kernel on the hyperparameters. Moreover, in contrast to
MTL, in our case the input space and the training samples
are the same for each task; a task is specified by a value of
the hyperparameter. This setting is sometimes refered to as
multi-output learning (Álvarez et al., 2012).

Formally, assume that we have p tasks described by parame-
ters (θj)

p
j=1. The idea of multi-task learning is to minimize

the sum of the local loss functions RSθj , i. e.

arg min
h

∑p

j=1
RS

θj (hj) + Ω(h),

where the individual tasks are modelled by the real-valued
hj functions, the overall Rp-valued model is the vector-
valued function h:x 7→ (h1(x), . . . , hp(x)), and Ω is a reg-
ularization term encoding similarities between tasks. Such
approaches have been developed in (Sangnier et al., 2016)
for QR and in (Glazer et al., 2013) for DLSE.

Learning a continuum of tasks: In the following, we
propose a novel framework called Infinite Task Learn-
ing in which we learn a function-valued function h ∈
F (X ; F (Θ; Y)). Our goal is to be able to handle new
tasks after the learning phase and thus, not to be limited to
given predefined values of the hyperparameter. Regarding
this goal, our framework generalizes the Parametric Task
Learning approach introduced by Takeuchi et al. (2013), by
allowing a wider class of models and relaxing the hypothe-
sis of piece-wise linearity of the loss function. Moreover a
nice byproduct of this vv-RKHS based approach is that one
can benefit from the functional point of view, design new
regularizers and impose various constraints on the whole
continuum of tasks, e. g.,

• The continuity of the θ 7→ h(x)(θ) function is a natural
desirable property: for a given input x, the predictions on
similar tasks should also be similar.

• Another example is to impose a shape constraint in QR:
the conditional quantile should be increasing w. r. t. the
hyperparameter θ. This requirement can be imposed
through the functional view of the problem.

• In DLSE, to get nested level sets, one would want that
for all x ∈ X , the decision function θ 7→ 1R+

(h(x)(θ)−
t(θ)) changes its sign only once.

To keep the presentation simple, in the sequel we are going
to focus on ITL in the supervised setting; unsupervised
tasks can be handled similarly.

Assume that h belongs to some space H ⊆
F (X ; F (Θ; Y)) and introduce an integrated loss
function

V (y, h(x)):=

∫
Θ

v(θ, y, h(x)(θ))dµ(θ), (4)

where the local loss v: Θ× Y × Y → R denotes vθ seen as
a function of three variables including the hyperparameter
and µ is a probability measure on Θ which encodes the
importance of the prediction at different hyperparameter
values. Without prior information and for compact Θ, one
may consider µ to be uniform. The true risk reads then

R(h):=EX,Y [V (Y, h(X))] . (5)

Intuitively, minimizing the expectation of the integral over
θ in a rich enough space corresponds to searching for a
pointwise minimizer x 7→ h∗(x)(θ) of the parametrized
tasks introduced in Eq. (1) with, for instance, the implicit
space constraint that θ 7→ h∗(x)(θ) is a continuous function
for each input x. We show in Proposition S.4.1 that this is
precisely the case in QR.

Interestingly, the empirical counterpart of the true risk mini-
mization can now be considered with a much richer family
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of penalty terms:

min
h∈H

RS(h) + Ω(h), RS(h):=
1

n

∑n

i=1
V (yi, h(xi)). (6)

Here, Ω(h) can be a weighted sum of various penalties
as seen in Section 3. Many different models (H) could be
applied to solve this problem. In our work we consider
Reproducing Kernel Hilbert Spaces as they offer a simple
and principled way to define regularizers by the appropriate
choice of kernels and exhibit a significant flexibility.

3. Using RKHSs to Solve this Problem
This section is dedicated to solving the ITL problem defined
in Eq. (6). We first focus on the objective (Ṽ ), then detail
the applied vv-RKHS model family with various penalty
examples, followed by representer theorems which give rise
to computational tractability.

Sampled Empirical Risk: In practice solving Eq. (6)
can be rather challenging due to the integral over θ. One
might consider different numerical integration techniques
to handle this issue. We focus here on Quasi Monte Carlo
(QMC) methods as they allow (i) efficient optimization over
vv-RKHSs which we will use for modelling H (Proposi-
tion 3.1), and (ii) enable us to derive generalization guaran-
tees (Proposition 3.3). Indeed, let

Ṽ (y, h(x)):=
∑m

j=1
wjv(θj , y, h(x)(θj)) (7)

be the QMC approximation of Eq. (4). Let wj =
m−1F−1(θj), and (θj)

m
j=1 be a sequence with values in

[0, 1]d such as the Sobol or Halton sequence where µ is
assumed to be absolutely continuous w. r. t. the Lebesgue
measure and F is the associated cdf. Using this notation
and the training samples S = ((xi, yi))

n
i=1, the empirical

risk takes the form

R̃S(h):=
1

n

∑n

i=1
Ṽ (yi, h(xi)) (8)

and the problem to solve is

min
h∈H

R̃S(h) + Ω(h). (9)

Hypothesis class (H): Recall that H ⊆
F (X ; F (Θ; Y)), in other words h(x) is a Θ 7→ Y func-
tion for all x ∈ X . In this work we assume that the Θ 7→ Y
mapping can be described by an RKHS HkΘ associated to
a kΘ: Θ×Θ→ R scalar-valued kernel defined on the hyper-
parameters. Let kX :X × X → R be a scalar-valued kernel
on the input space. The x 7→ (hyperparameter 7→ output)
relation, i. e. h:X → HkΘ

is then modelled by
the Vector-Valued Reproducing Kernel Hilbert Spa-
ce HK = span {K(·, x)f | x ∈ X , f ∈ HkΘ },

where the operator-valued kernel K is defined as
K(x, z) = kX (x, z)I , and I = IHkΘ

is the identity
operator onHkΘ .

This so-called decomposable Operator-Valued Kernel has
several benefits and gives rise to a function space with a
well-known structure. One can consider elements h ∈ HK
as mappings from X to HkΘ

, and also as functions from
(X ×Θ) to R. It is indeed known that there is an isometry
betweenHK andHkX ⊗HkΘ

, the RKHS associated to the
product kernel kX ⊗ kΘ. The equivalence between these
views allows a great flexibility and enables one to follow
a functional point of view (to analyse statistical aspects)
or to leverage the tensor product point of view (to design
new kind of penalization schemes). Below we detail various
regularizers before focusing on the representer theorems.

• Ridge Penalty: For QR, a natural regularization is the
squared vv-RKHS norm

ΩRIDGE(h) = λ
2 ‖h‖

2
HK

, λ > 0. (10)

This choice is amenable to excess risk analysis (see Propo-
sition 3.3). It can be also seen as the counterpart of the
classical (multi-task regularization term introduced by
Sangnier et al. (2016), compatible with an infinite num-
ber of tasks. ‖·‖2HK

acts by constraining the solution to a
ball of a finite radius within the vv-RKHS, whose shape
is controlled by both kX and kΘ.

• L2,1-penalty: For DLSE, it is more adequate to apply an
L2,1-RKHS mixed regularizer:

ΩDLSE(h) =
1

2

∫
Θ

‖h(·)(θ)‖2HkX
dµ(θ) (11)

which is an example of a Θ-integrated penalty. This
Ω choice allows the preservation of the θ-property (see
Fig. S.3), i. e. that the proportion of the outliers is θ.

• Shape Constraints: Taking the example of QR it is
advantageous to ensure the monotonicity of the esti-
mated quantile function Let ∂Θh denotes the derivative
of h(x)(θ) with respect to θ. Then one should solve

arg min
h∈HK

R̃S(h) + ΩRIDGE(h)

s. t. ∀(x, θ) ∈ X ×Θ, (∂Θh)(x)(θ) ≥ 0.

However, the functional constraint prevents a tractable
optimization scheme. To mitigate this bottleneck, we
penalize if the derivative of h w. r. t. θ is negative:

Ωnc(h):=λnc

∫
X

∫
Θ

|−(∂Θh)(x)(θ)|+dµ(θ)dP(x). (12)

When P:=PX this penalization can rely on the same
anchors and weights as the ones used to approximate the
integrated loss function:

Ω̃nc(h) = λnc

∑n,m

i,j=1
wj |−(∂Xh)(xi)(θj)|+. (13)
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Thus, one can modify the overall regularizer in QR to be

Ω(h):=ΩRIDGE(h) + Ω̃nc(h). (14)

Representer Theorems: Apart from the flexibility of reg-
ularizer design, the other advantage of applying vv-RKHS
as hypothesis class is that it gives rise to finite-dimensional
representation of the ITL solution under mild conditions.

Proposition 3.1 (Representer). Assume that for ∀θ ∈ Θ, vθ
is a proper lower semicontinuous convex function with re-
spect to its second argument. Then

arg min
h∈HK

R̃S(h) + Ω(h), λ > 0

with Ω(h) defined as in Eq. (14), has a unique solution h∗,
and ∃ (αij)

n,m
i,j=1 , (βij)

n,m
i,j=1 ∈ R2nm such that ∀x ∈ X

h∗(x) =

n∑
i=1

kX (x, xi)

(
m∑

j=1

αijkΘ(·, θj)+βij(∂2kΘ)(·, θj)

)
.

For DLSE, we similarly get a representer theorem with
the following modelling choice. Let kb : Θ × Θ → R
be a scalar-valued kernel (possibly different from kθ),Hkb
the associated RKHS and t ∈ Hkb . Assume also that
Θ ⊆ [ε, 1] where ε > 0.2 Then, learning a continuum of
level sets boils down to the minimization problem

arg min
h∈HK ,t∈Hkb

R̃S(h, t) + Ω̃(h, t), λ > 0, (15)

where Ω̃(h, t) = 1
2

∑m
j=1 wj‖h(·)(θj)‖2HkX

+ λ
2 ‖t‖

2
Hkb

,

R̃S(h, t) = 1
n

∑n,m
i,j=1

wj

θj

(
|t(θj)− h(xi)(θj)|+ − t(θj)

)
.

Proposition 3.2 (Representer). Assume that kΘ is bounded:
supθ∈Θ kΘ(θ, θ) < +∞. Then the minimization problem
described in Eq. (15) has a unique solution (h∗, t∗) and
there exist (αij)

n,m
i,j=1 ∈ Rn×m and (βj)

m
j=1 ∈ Rm such

that for ∀(x, θ) ∈ X × [ε, 1],

h∗(x)(θ) =
∑n,m

i,j=1
αijkX (x, xi)kΘ(θ, θj),

t∗(θ) =
∑m

j=1
βjkb(θ, θj).

Remarks:

• Relation to Joint Quantile Regression (JQR): In Infinite
Quantile Regression (∞-QR), by choosing kΘ to be the
Gaussian kernel, kb(x, z) = 1{ x }(z), µ = 1

m

∑m
j=1 δθj ,

where δθ is the Dirac measure concentrated on θ, one gets
back Sangnier et al. (2016)’s Joint Quantile Regression

2We choose Θ ⊆ [ε, 1], ε > 0 rather than Θ ⊆ [0, 1] because
the loss might not be integrable on [0, 1].

(JQR) framework as a special case of our approach. In
contrast to the JQR, however, in∞-QR one can predict
the quantile value at any θ ∈ (0, 1), even outside the
(θj)

m
j=1 used for learning.

• Relation to q-OCSVM: In DLSE, by choosing
kΘ(θ, θ′) = 1 (for all θ , θ′ ∈ Θ) to be the constant kernel,
kb(θ, θ

′) = 1{ θ }(θ
′), µ = 1

m

∑m
j=1 δθj , our approach

specializes to q-OCSVM (Glazer et al., 2013).

• Relation to Kadri et al. (2016): Note that Operator-Va-
lued Kernels for functional outputs have also been used in
(Kadri et al., 2016), under the form of integral operators
acting on L2 spaces. Both kernels give rise to the same
space of functions; the benefit of our approach being to
provide an exact finite representation of the solution (see
Proposition 3.1).

• Efficiency of the decomposable kernel: this kernel choice
allows to rewrite the expansions in Propositions 3.1
and 3.2 as a Kronecker products and the complexity
of the prediction of n′ points for m′ quantile becomes
O(m′mn+ n′nm) instead of O(m′mn′n).

Excess Risk Bounds: Below we provide a generaliza-
tion error analysis to the solution of Eq. (9) for QR (with
Ridge regularization and without shape constraints) by sta-
bility argument (Bousquet & Elisseeff, 2002), extending the
work of Audiffren & Kadri (2013) to Infinite-Task Learning.
The proposition (finite sample bounds are given in Corol-
lary S.5.6) instantiates the guarantee for the QMC scheme.

Proposition 3.3 (Generalization). Let h∗ ∈ HK be the
solution of Eq. (9) for the QR problem with QMC approxi-
mation. Under mild conditions on the kernels kX , kΘ and
PX,Y , stated in the supplement, one has

R(h∗) ≤ R̃S(h∗) +OPX,Y

(
1√
λn

)
+O

(
log(m)√
λm

)
. (16)

(n,m) Trade-off: The proposition reveals the interplay be-
tween the two approximations, n (the number of training
samples) and m (the number of locations taken in the inte-
gral approximation), and allows to identify the regime in
λ = λ(n,m) driving the excess risk to zero. Indeed by
choosing m =

√
n and discarding logarithmic factors for

simplicity, λ � n−1 is sufficient. The mild assumptions
imposed are: boundedness on both kernels and the random
variable Y , as well as some smoothness of the kernels.

Numerical Experiments: The efficiency of the ITL
scheme for QR has been tested on several benchmarks;
the results are summarized in Table S.1 for 20 real datasets
from the UCI repository. An additional experiment concern-
ing the non-crossing property on a synthetic dataset can be
found in Fig. S.2.
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In the DLSE case, one can refer to Fig. S.3 for an experi-
ment on the θ-property (proportion of inliers/outliers).
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SUPPLEMENTARY MATERIAL

S.4. Quantile Regression
S.4.1. Theoretical aspects

Let us recall the expression of the pinball loss:

(17)vθ : (y, y′) ∈ R2 7→ max (θ(y − y′), (θ − 1)(y − y′)) ∈ R.

Proposition S.4.1. LetX,Y be two random variables (r. v.s) respectively taking values inX and R, and q:X → F([0, 1],R)

the associated conditional quantile function. Let µ be a positive measure on [0, 1] such that
∫ 1

0
E [vθ (Y, q(X)(θ))] dµ(θ) <

∞. Then for ∀h ∈ F (X ; F ([0, 1]; R))

R(h)−R(q) ≥ 0,

where R is the risk defined in Eq. (5).

Proof. The proof is based on the one given in (Li et al., 2007) for a single quantile. Let f ∈ F (X ; F ([0, 1]; R)), θ ∈ (0, 1)
and (x, y) ∈ X × R. Let also

s =

{
1 if y ≤ f(x)(θ)

0 otherwise
, t =

{
1 if y ≤ q(x)(θ)

0 otherwise
.

It holds that

vθ(y, h(x)(θ))− vθ(y, q(x)(θ)) = θ(1− s)(y − h(x)(θ)) + (θ − 1)s(y − h(x)(θ))

− θ(1− t)(y − q(x)(θ))− (θ − 1)t(y − q(x)(θ))

= θ(1− t)(q(x)(θ)− h(x)(θ)) + θ((1− t)− (1− s))h(x)(θ)

+ (θ − 1)t(q(x)(θ − h(x)(θ))) + (θ − 1)(t− s)h(x)(θ) + (t− s)y
= (θ − t)(q(x)(θ)− h(x)(θ)) + (t− s)(y − h(x)(θ)).

Then, notice that

E[(θ − t)(q(X)(θ)− h(X)(θ))] = E[E[(θ − t)(q(X)(θ)− h(X)(θ))]|X] = E[E[(θ − t)|X](q(X)(θ)− h(X)(θ))]

and since q is the true quantile function,

E[t|X] = E[1{Y≤q(X)(θ)}|X] = P[Y ≤ q(X)(θ)|X] = θ,

so

E[(θ − t)(q(X)(θ)− h(X)(θ))] = 0.

Moreover, (t− s) is negative when q(x)(θ) ≤ y ≤ h(x)(θ), positive when h(x)(θ) ≤ y ≤ q(x)(θ) and 0 otherwise, thus
the quantity (t− s)(y − h(x)(θ)) is always positive. As a consequence,

R(h)−R(q) =

∫
[0,1]

E[vθ(Y, h(X)(θ))− vθ(Y, q(X)(θ))]dµ(θ) ≥ 0

which concludes the proof.

The Proposition S.4.1 allows us to derive conditions under which the minimization of the risk above yields the true quantile
function. Under the assumption that (i) q is continuous (as seen as a function of two variables), (ii) Supp(µ) = [0, 1],
then the minimization of the integrated pinball loss performed in the space of continuous functions yields the true quantile
function on the support of PX,Y .
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Figure S.2. Impact of crossing penalty on toy data. Left plot: strong non-crossing penalty (λnc = 10). Right plot: no non-crossing
penalty (λnc = 0). The plots show 100 quantiles of the continuum learned, linearly spaced between 0 (blue) and 1 (red). Notice
that the non-crossing penalty does not provide crossings to occur in the regions where there is no points to enforce the penalty (e. g.
x ∈ [0.13, 0.35]). This phenomenon is alleviated by the regularity of the model.

S.4.2. Experiments

There are several ways to solve the non-smooth optimization problems associated to the QR, DLSE and CSC tasks. One
could proceed for example by duality—as it was done in JQR Sangnier et al. (2016)—, or apply sub-gradient descent
techniques (which often converge quite slowly). In order to allow unified treatment and efficient solution in our experiments
we used the L-BFGS-B (Zhu et al., 1997) optimization scheme which is widely popular in large-scale learning, with
non-smooth extensions (Skajaa, 2010; Keskar & Wächter, 2017). The technique requires only evaluation of objective
function along with its gradient, which can be computed automatically using reverse mode automatic differentiation (as in
Abadi et al. (2016)). To benefit from from the available fast smooth implementations (Jones et al., 2001; Fei et al., 2014),
we applied an infimal convolution on the non-differentiable terms of the objective. Under the assumption that m = O(

√
n)

(see Proposition 3.3), the complexity per L-BFGS-B iteration is O(n2
√
n).

The efficiency of the non-crossing penalty is illustrated in Fig. S.2 on a synthetic sine wave dataset where n = 40 and
m = 20 points have been generated. Many crossings are visible on the right plot, while they are almost not noticible on the
left plot, using the non-crossing penalty. Concerning our real-world examples (20 UCI datasets), to study the efficiency
of the proposed scheme in quantile regression the following experimental protocol was applied. Each dataset was splitted
randomly into a training set (70%) and a test set (30%). We optimized the hyperparameters by minimizing a 5-folds cross
validation with a Bayesian optimizer3. Once the hyperparameters were obtained, a new regressor was learned on the whole
training set using the optimized hyperparameters. We report the value of the pinball loss and the crossing loss on the test set
for three methods: our technique is called∞-QR, we refer to Sangnier et al. (2016)’s approach as JQR, and independent
learning (abbreviated as IND-QR) represents a further baseline.

We repeated 20 simulations (different random training-test splits); the results are also compared using a Mann-Whitney-
Wilcoxon test. A summary is provided in Table S.1.

Notice that while JQR is tailored to predict finite many quantiles, our∞-QR method estimates the whole quantile function

3We used a Gaussian Process model and minimized the Expected improvement. The optimizer was initialized using 27 samples from
a Sobol sequence and ran for 50 iterations.



Submission and Formatting Instructions for ICML 2019

Table S.1. Quantile Regression on 20 UCI datasets. Reported: 100×value of the pinball loss, 100×crossing loss (smaller is better).
p.-val.: outcome of the Mann-Whitney-Wilcoxon test of JQR vs. ∞-QR and Independent vs. ∞-QR. Boldface: significant values w. r. t.
∞-QR.

DATASET
JQR IND-QR ∞-QR

(PINBALL P.-VAL.) (CROSS P.-VAL.) (PINBALL P.-VAL.) (CROSS P.-VAL.) PINBALL CROSS

COBARORE 159± 24 9 · 10−01 0.1± 0.4 6 · 10−01 150± 21 2 · 10−01 0.3± 0.8 7 · 10−01 165± 36 2.0± 6.0

ENGEL 175± 555 6 · 10−01 0.0± 0.2 1 · 10+00 63± 53 8 · 10−01 4.0± 12.8 8 · 10−01 47± 6 0.0± 0.1

BOSTONHOUSING 49± 4 8 · 10−01 0.7± 0.7 2 · 10−01 49± 4 8 · 10−01 1.3± 1.2 1 · 10−05 49± 4 0.3± 0.5

CAUTION 88± 17 6 · 10−01 0.1± 0.2 6 · 10−01 89± 19 4 · 10−01 0.3± 0.4 2 · 10−04 85± 16 0.0± 0.1

FTCOLLINSSNOW 154± 16 8 · 10−01 0.0± 0.0 6 · 10−01 155± 13 9 · 10−01 0.2± 0.9 8 · 10−01 156± 17 0.1± 0.6

HIGHWAY 103± 19 4 · 10−01 0.8± 1.4 2 · 10−02 99± 20 9 · 10−01 6.2± 4.1 1 · 10−07 105± 36 0.1± 0.4

HEIGHTS 127± 3 1 · 10+00 0.0± 0.0 1 · 10+00 127± 3 9 · 10−01 0.0± 0.0 1 · 10+00 127± 3 0.0± 0.0

SNIFFER 43± 6 8 · 10−01 0.1± 0.3 2 · 10−01 44± 5 7 · 10−01 1.4± 1.2 6 · 10−07 44± 7 0.1± 0.1

SNOWGEESE 55± 20 7 · 10−01 0.3± 0.8 3 · 10−01 53± 18 6 · 10−01 0.4± 1.0 5 · 10−02 57± 20 0.2± 0.6

UFC 81± 5 6 · 10−01 0.0± 0.0 4 · 10−04 82± 5 7 · 10−01 1.0± 1.4 2 · 10−04 82± 4 0.1± 0.3

BIGMAC2003 80± 21 7 · 10−01 1.4± 2.1 4 · 10−04 74± 24 9 · 10−02 0.9± 1.1 7 · 10−05 84± 24 0.2± 0.4

UN3 98± 9 8 · 10−01 0.0± 0.0 1 · 10−01 99± 9 1 · 10+00 1.2± 1.0 1 · 10−05 99± 10 0.1± 0.4

BIRTHWT 141± 13 1 · 10+00 0.0± 0.0 6 · 10−01 140± 12 9 · 10−01 0.1± 0.2 7 · 10−02 141± 12 0.0± 0.0

CRABS 11± 1 4 · 10−05 0.0± 0.0 8 · 10−01 11± 1 2 · 10−04 0.0± 0.0 2 · 10−05 13± 3 0.0± 0.0

GAGURINE 61± 7 4 · 10−01 0.0± 0.1 3 · 10−03 62± 7 5 · 10−01 0.1± 0.2 4 · 10−04 62± 7 0.0± 0.0

GEYSER 105± 7 9 · 10−01 0.1± 0.3 9 · 10−01 105± 6 9 · 10−01 0.2± 0.3 6 · 10−01 104± 6 0.1± 0.2

GILGAIS 51± 6 5 · 10−01 0.1± 0.1 1 · 10−01 49± 6 6 · 10−01 1.1± 0.7 2 · 10−05 49± 7 0.3± 0.3

TOPO 69± 18 1 · 10+00 0.1± 0.5 1 · 10+00 71± 20 1 · 10+00 1.7± 1.4 3 · 10−07 70± 17 0.0± 0.0

MCYCLE 66± 9 9 · 10−01 0.2± 0.3 7 · 10−03 66± 8 9 · 10−01 0.3± 0.3 7 · 10−06 65± 9 0.0± 0.1

CPUS 7± 4 2 · 10−04 0.7± 1.0 5 · 10−04 7± 5 3 · 10−04 1.2± 0.8 6 · 10−08 16± 10 0.0± 0.0

hence solves a more challenging task. Despite the more difficult problem solved, as Table S.1 suggest that the performance
in terms of pinball loss of∞-QR is comparable to that of the state-of-the-art JQR on all the twenty studied benchmarks,
except for the ‘crabs’ and ‘cpus’ datasets (p.-val. < 0.25%). In addition, when considering the non-crossing penalty one can
observe that∞-QR outperforms the IND-QR baseline on eleven datasets (p.-val. < 0.25%) and JQR on two datasets. This
illustrates the efficiency of the constraint based on the continuum scheme.

S.5. Generalization Properties in the Context of Stability
The analysis of the generalization error will be performed using the notion of uniform stability introduced in (Bousquet &
Elisseeff, 2002). For a derivation of generalization bounds in vv-RKHS, we refer to (Kadri et al., 2016). In their framework,
the goal is to minimize a risk which can be expressed as

(18)RS,λ(h) =
1

n

n∑
i=1

`(yi, h, xi) + λ‖h‖2HK
,

where S = ((x1, y1), . . . , (xn, yn)) are i. i. d. inputs and λ > 0. We almost recover their setting by using losses defined as

`:

{
R×HK ×X → R
(y, h, x) 7→ Ṽ (y, f(x)),

where Ṽ is a loss associated to some local cost defined in Eq. (7). Then, they study the stability of the algorithm which,
given a dataset S, returns

(19)h∗S = arg min
h∈HK

RS,λ(h).

There is a slight difference between their setting and ours, since they use losses defined for some y in the output space of
the vv-RKHS, but this difference has no impact on the validity of the proofs in our case. The use of their theorem requires
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some assumption that are listed below. We recall the shape of the OVK we use : K : (x, z) ∈ X × X 7→ kX (x, z)IHkΘ
∈

L(HkΘ
), where kX and kΘ are both bounded scalar-valued kernels, in other words there exist (κX , κΘ) ∈ R2 such that

sup
x∈X

kX (x, x) < κ2
X and sup

θ∈Θ
kΘ(θ, θ) < κ2

Θ.

Assumption 1. ∃κ > 0 such that ∀x ∈ X , ‖K(x, x)‖L(HkΘ
) ≤ κ2.

Assumption 2. ∀h1, h2 ∈ HkΘ
, the function (x1, x2) ∈ X × X 7→ 〈K(x1, x2)h1, h2〉HkΘ

∈ R, is measurable.

Remark 1. Assumptions 1, 2 are satisfied for our choice of kernel.

Assumption 3. The application (y, h, x) 7→ `(y, h, x) is σ-admissible, i. e. convex with respect to f and Lipschitz
continuous with respect to f(x), with σ as its Lipschitz constant.

Assumption 4. ∃ξ ≥ 0 such that ∀(x, y) ∈ X × Y and ∀S training set, `(y, h∗S , x) ≤ ξ.

Definition S.5.1. Let S = ((xi, yi))
n
i=1 be the training data. We call Si the training data Si =

((x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)), 1 ≤ i ≤ n.

Definition S.5.2. A learning algorithm mapping a dataset S to a function h∗S is said to be β-uniformly stable with respect
to the loss function ` if ∀n ≥ 1, ∀1 ≤ i ≤ n, ∀S training set, ||`(·, h∗S , ·)− `(·, h∗Si , ·)||∞≤ β.

Proposition S.5.1. (Bousquet & Elisseeff, 2002) Let S 7→ h∗S be a learning algorithm with uniform stability β with respect
to a loss ` satisfying Assumption 4. Then ∀n ≥ 1, ∀δ ∈ (0, 1), with probability at least 1− δ on the drawing of the samples,
it holds that

R(h∗S) ≤ RS(h∗S) + 2β + (4β + ξ)

√
log (1/δ)

n
.

Proposition S.5.2. (Kadri et al., 2016) Under assumptions 1, 2, 3, a learning algorithm that maps a training set S to the
function h∗S defined in Eq. (19) is β-stable with β = σ2κ2

2λn .

Quantile Regression: We recall that in this setting, v(θ, y, h(x)(θ)) = max (θ(y − h(x)(θ)), (1− θ)(y − h(x)(θ))) and
the loss is

(20)`:

{
R×HK ×X → R
(y, h, x) 7→ 1

m

∑m
j=1 max (θj(y − h(x)(θj)), (θj − 1)(y − h(x)(θj))).

Moreover, we will assume that |Y | is bounded by B ∈ R as a r. v.. We will therefore verify the hypothesis for y ∈ [−B,B]
and not y ∈ R.

Lemma S.5.3. In the case of the QR, the loss ` is σ-admissible with σ = 2κΘ.

Proof. Let h1, h2 ∈ HK and θ ∈ [0, 1]. ∀x, y ∈ X × R, it holds that

v(θ, y, h1(x)(θ))− v(θ, y, h2(x)(θ)) = (θ − t)(h2(x)(θ)− h1(x)(θ)) + (t− s)(y − h1(x)(θ)),

where s = 1y≤h1(x)(θ) and t = 1y≤h2(x)(θ). We consider all possible cases for t and s :

• t = s = 0 : |(t− s)(y − h1(x)(θ))|≤ |h2(x)(θ)− h1(x)(θ)|
• t = s = 1 : |(t− s)(y − h1(x)(θ))|≤ |h2(x)(θ)− h1(x)(θ)|
• s = 1,t = 0 : |(t− s)(y − h1(x)(θ))|= |h1(x)(θ)− y|≤ |h1(x)(θ)− h2(x)(θ)|
• s = 0,t = 1 : |(t− s)(y − h1(x)(θ))|= |y − h1(x)(θ)|≤ |h1(x)(θ)− h2(x)(θ)| because of the conditions on t, s.

Thus |v(θ, y, h1(x)(θ))−v(θ, y, h2(x)(θ))|≤ (θ+1)|h1(x)(θ)−h2(x)(θ)|≤ (θ+1)κΘ||h1(x)−h2(x)||HkΘ
. By summing

this expression over the (θj)
m
j=1, we get that

|`(x, h1, y)− `(x, h2, y)|≤ 1

m

m∑
j=1

(θj + 1)κΘ||h1(x)− h2(x)||HkΘ
≤ 2κΘ||h1(x)− h2(x)||HkΘ

and ` is σ-admissible with σ = 2κΘ.
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Lemma S.5.4. Let S = ((x1, y1), . . . , (xn, yn)) be a training set and λ > 0. Then ∀x, θ ∈ X × (0, 1), it holds that

|h∗S(x)(θ)|≤ κXκΘ

√
B
λ .

Proof. Since h∗S is the output of our algorithm and 0 ∈ HK , it holds that

λ||h∗S ||2 ≤
1

nm

n∑
i=1

m∑
j=1

v(θj , yi, 0) ≤ 1

nm

n∑
i=1

m∑
j=1

max (θj , 1− θj)|yi|≤ B.

Thus ||h∗S ||≤
√

B
λ . Moreover, ∀x, θ ∈ X × (0, 1), |h∗S(x)(θ)|= |〈h∗S(x), kΘ(θ, ·)〉HkΘ

|≤ ||h∗S(x)||HkΘ
κΘ ≤

||h∗S ||HkΘ
κXκΘ which concludes the proof.

Lemma S.5.5. Assumption 4 is satisfied for ξ = 2
(
B + κXκΘ

√
B
λ

)
.

Proof. Let S = ((x1, y1), . . . , (xn, yn)) be a training set and h∗S be the output of our algorithm. ∀(x, y) ∈ X × [−B,B],
it holds that

`(y, h∗S , x) =
1

m

m∑
j=1

max (θj(y − h∗S(x)(θj)), (θj − 1)(y − h∗S(x)(θj))) ≤
2

m

m∑
j=1

|y − h∗S(x)(θj)|

≤ 2

m

m∑
j=1

|y|+|h∗S(x)(θj)|≤ 2

(
B + κXκΘ

√
B

λ

)
.

Corollary S.5.6. The QR learning algorithm defined in Eq. (9) is such that ∀n ≥ 1, ∀δ ∈ (0, 1), with probability at least
1− δ on the drawing of the samples, it holds that

(21)R̃(h∗S) ≤ R̃S(h∗S) +
4κ2
Xκ

2
Θ

λn
+

[
8κ2
Xκ

2
Θ

λn
+ 2

(
B + κXκΘ

√
B

λ

)]√
log (1/δ)

n
.

Proof. This is a direct consequence of Proposition S.5.2, Proposition S.5.1, Lemma S.5.3 and Lemma S.5.5.

Definition S.5.3 (Hardy-Krause variation). Let Π be the set of subdivisions of the interval Θ = [0, 1]. A subdivision will be
denoted σ = (θ1, θ2, . . . , θp) and f : Θ→ R be a function. We call Hardy-Krause variation of the function f the quantity
sup
σ∈Π

∑p−1
i=1 |f(θi+1)− f(θi)|.

Remark 2. If f is continuous, V (f) is also the limit as the mesh of σ goes to zero of the above quantity.

In the following, let f : θ 7→ EX,Y [v(θ, Y, h∗S(X)(θ))]. This function is of primary importance for our analysis, since in
the Quasi Monte-Carlo setting, the bound of Proposition 3.3 makes sense only if the function f has finite Hardy-Krause
variation, which is the focus of the following lemma.

Lemma S.5.7. Assume the boundeness of both scalar kernels kXand kΘ. Assume moreover that kΘ is C1 and that its
partial derivatives are uniformly bounded by some constant C. Then

V (f) ≤ B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ
. (22)
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Proof. It holds that

sup
σ ∈Π

p−1∑
i =1

|f(θi+1)− f(θi)| = sup
σ∈Π

p−1∑
i=1

∣∣∣∣∫ v(θi+1, y, h
∗
S(x)(θi+1))dPX,Y −

∫
v(θi, y, h

∗
S(x)(θi))dPX,Y

∣∣∣∣
= sup
σ∈Π

p−1∑
i=1

∣∣∣∣∫ v(θi+1, y, h
∗
S(x)(θi+1))− v(θi, y, h

∗
S(x)(θi))dPX,Y

∣∣∣∣
≤ sup
σ∈Π

p−1∑
i=1

∫
|v(θi+1, y, h

∗
S(x)(θi+1))− v(θi, y, h

∗
S(x)(θi))|dPX,Y

≤ sup
σ∈Π

∫ p−1∑
i=1

|v(θi+1, y, h
∗
S(x)(θi+1))− v(θi, y, h

∗
S(x)(θi))|dPX,Y .

The supremum of the integral is smaller than the integral of the supremum, as such

(23)V (f) ≤
∫
V (fx,y)dPX,Y ,

where fx,y: θ 7→ v(θ, y, h∗S(x)(θ)) is the counterpart of the function f at point (x, y). To bound this quantity, let us first
bound locally V (fx,y). To that extent, we fix some (x, y) in the following. Since fx,y is continuous (because kΘ is C1),
then using Choquet (1969, Theorem 24.6), it holds that

V (fx,y) = lim
|σ|→0

p−1∑
i=1

|fx,y(θi+1)− fx,y(θi)|.

Moreover since k ∈ C1 and ∂kθ = (∂1k)(·, θ) has a finite number of zeros for all θ ∈ ×, one can assume that in the
subdivision considered afterhand all the zeros (in θ) of the residuals y − h∗S(x)(θ) are present, so that y − h∗S(x)(θi+1)
and y − h∗S(x)(θi) are always of the same sign. Indeed, if not, create a new, finer subdivision with this property and
work with this one. Let us begin the proper calculation: let σ = (θ1, θ2, . . . , θp) be a subdivision of Θ, it holds that
∀i ∈ { 1, . . . , p− 1 }:

|fx,y(θi+1)− fx,y(θi)| = |max (θi+1(y − h∗S(x)(θi+1)), (1− θi+1)(y − h∗S(x)(θi+1)))

−max (θi(y − h∗S(x)(θi)), (1− θi+1)(y − h∗S(x)(θi)))|.

We now study the two possible outcomes for the residuals:

• If y − h(x)(θi+1) ≥ 0 and y − h(x)(θi) ≥ 0 then

|fx,y(θi+1)− fx,y(θi)| = |θi+1(y − h∗S(x)(θi+1))− θi(y − h∗S(x)(θi))|
= |(θi+1 − θi)y + (θi − θi+1)h∗S(x)(θi+1) + θi(h

∗
S(x)(θi)− h∗S(x)(θi+1))|

≤ |(θi+1 − θi)y|+|(θi − θi+1)h∗S(x)(θi+1)|+|θi(h∗S(x)(θi)− h∗S(x)(θi+1))|.

From Lemma S.5.4, it holds that h∗S(x)(θi+1) ≤ κXκΘ

√
B
λ . Moreover,

|h∗S(x)(θi)− h∗S(x)(θi+1)| =
∣∣∣〈h(x), kΘ(θi, ·)− kΘ(θi+1, ·)〉HkΘ

∣∣∣
≤ ‖h(x)‖HkΘ

‖kΘ(θi, ·)− kΘ(θi+1, ·)‖HkΘ

≤ κX
√
B

λ

√
|kΘ(θi, θi) + kΘ(θi+1, θi+1)− 2kΘ(θi+1, θi)|

≤ κX
√
B

λ

(√
|kΘ(θi+1, θi+1)− kΘ(θi+1, θi)|+

√
|kΘ(θi, θi)− kΘ(θi+1, θi)|

)
.
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Since kΘ is C1, with partial derivatives uniformly bounded by C, |kΘ(θi+1, θi+1)− kΘ(θi+1, θi)| ≤ C(θi+1 − θi)
and |kΘ(θi, θi)− kΘ(θi+1, θi)| ≤ C(θi+1 − θi) so that |h∗S(x)(θi)− h∗S(x)(θi+1)| ≤ κX

√
2BC
λ

√
θi+1 − θi and

overall

|fx,y(θi+1)− fx,y(θi)| ≤
(
B + κXκΘ

√
B

λ

)
(θi+1 − θi) + κX

√
2BC

λ

√
θi+1 − θi.

• If y − h(x)(θi+1) ≤ 0 and y − h(x)(θi) ≤ 0 then |fx,y(θi+1)− fx,y(θi)| =
|(1− θi+1)(y − h∗S(x)(θi+1))− (1− θi)(y − h∗S(x)(θi))| ≤ |h∗S(x)(θi)− h∗S(x)(θi+1)| + |(θi+1 − θi)y| +
|(θi − θi+1)h∗S(x)(θi+1)|+ |θi(h∗S(x)(θi)− h∗S(x)(θi+1))| so that with similar arguments one gets

(24)|fx,y(θi+1)− fx,y(θi)| ≤
(
B + κXκΘ

√
B

λ

)
(θi+1 − θi) + 2κX

√
2BC

λ

√
θi+1 − θi.

Therefore, regardless of the sign of the residuals y − h(x)(θi+1) and y − h(x)(θi), one gets Eq. (24). Since the square root
function has Hardy-Kraus variation of 1 on the interval Θ = [0, 1], it holds that

sup
σ∈Π

p−1∑
i =1

|fx,y(θi+1)− fx,y(θi)|≤ B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ
.

Combining this with Eq. (23) finally gives

V (f) ≤ B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ
.

Lemma S.5.8. Let R be the risk defined in Eq. (5) for the quantile regression problem. Assume that (θ)mj=1 have been
generated via the Sobol sequence and that kΘ is C1 and that its partial derivatives are uniformly bounded by some constant
C. Then

|R(h∗S)− R̃(h∗S)|≤
(
B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ

)
log(m)

m
. (25)

Proof. Let f : θ 7→ EX,Y [v(θ, Y, h∗S(X)(θ))]. It holds that |R(h∗S) − R̃(h∗S)|≤ V (f) log(m)
m according to classical

Quasi-Monte Carlo approximation results, where V (f) is the Hardy-Krause variation of f . Lemma S.5.7 allows then to
conclude.

Proof of Proposition 3.3. Combine Lemma S.5.8 and Corollary S.5.6 to get an asymptotic behaviour as n,m→∞.

S.6. DLSE
To assess the quality of the estimated model by ∞-OCSVM, we illustrate the θ-property (Schölkopf et al., 2000):
the proportion of inliers has to be approximately 1 − θ (∀θ ∈ (0, 1)). For the studied datasets (Wilt, Spambase)
we used the raw inputs without applying any preprocessing. Our input kernel was the exponentiated χ2 kernel
kX (x, z):= exp

(
−γX

∑d
k=1(xk − zk)2/(xk + zk)

)
with bandwidth γX = 0.25. A Gauss-Legendre quadrature rule

provided the integral approximation in Eq. (7), with m = 100 samples. We chose the Gaussian kernel for kΘ; its bandwidth
parameter γΘ was the 0.2−quantile of the pairwise Euclidean distances between the θj’s obtained via the quadrature rule.
The margin (bias) kernel was kb = kΘ. As it can be seen in Fig. S.3, the θ-property holds for the estimate which illustrates
the efficiency of the proposed continuum approach for density level-set estimation.
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Figure S.3. Density Level-Set Estimation: the θ-property is approximately satisfied.


