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An example of task : Quantile Regression

Minimize in h
Ex,v[max(6(Y — h(X)), (6 — 1)(Y — h(X)))]

Figure 2: Two independently learnt quantile estimations.

e Not adapted to the structure of the problem
e No way to recover other quantiles
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An example of task : Cost-Sensitive Classification

e Binary classification with asymetric loss function. Minimize

S 1{1}(Y)‘1 - vh(XM
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Figure 3: Independent cost-sensitive classification.
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e No structure, No interpolation
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An example of task : Density Level Set Estimation

(Scholkopf et al., 2000) Given (x;)_, iid and 8 € (0,1), minimize
for (h,t) e Hy xR

1 ¢ 1
J(ht) = 5 > max(0,t=h(x)) — t+ 5 [hll3g,
=1
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An example of task : Density Level Set Estimation

(Scholkopf et al., 2000) Given (x;)_, iid and 8 € (0,1), minimize
for (h,t) e Hy xR

1 ¢ 1
J(ht) = 5 > max(0,t=h(x)) — t+ 5 [hll3g,
=1

Decision function
d(x) = 1z, (h(x) - 1)

0-property of the decision function
The decision function should separate new data into two
separate subsets with proportion © of outliers.

418



Multi-Task Learning

Given a problem indexed by some hyperparameter 6, solve
concomitantly a finite number of tasks given by (61,...,6p).
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Multi-Task Learning

Given a problem indexed by some hyperparameter 6, solve
concomitantly a finite number of tasks given by (61,...,6p).

e Outputin RP
e Sum the loss functions associated to each (6;)7_,
e Add regularization to benefit from similarity of tasks

e Create specific model constraints with prior knowledge of
tasks

How to extend this to a continuum of tasks ?
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A functional approach

Proposed framework : learn function-valued functions

‘input — (hyperparameter — output)’

X (0—=y)
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A functional approach

Proposed framework : learn function-valued functions

‘input — (hyperparameter — output)’

X (0—=y)

Goal : Learn a global function while preserving desired
properties of the output function for each hyperparameter 6.
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Supervised Learning Framework




Parametrized Task

ERM setting: minimize in h € H C F(X; F(©; R)) for a training
set 8 = (x;,y;)i, and A >0

Rs(h) = 3 V(yi, h(x))) +AQ(h)
i=1
where

V(y,h(x)) : = j@ Y(8,y, h(x)(©))du(),

and Q(h) is a regularization term.
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Sampled Empirical Risk

Estimating the integral: Quadrature, Monte-Carlo or
Quasi-Monte-Carlo.

Z v(6;,Y, h(x)(6)))
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Sampled Empirical Risk

Estimating the integral: Quadrature, Monte-Carlo or
Quasi-Monte-Carlo.

Z v(6;,Y, h(x)(6)))

e w;can't depend on h

e QMC: low discrepancy sequences (Sobol) lead to error
rates O(%)

e No need to approximate too precisely
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Functional space H

vw-RKHS framework (Carmeli et al., 2006):

e Hilbert space of functions with values in a Hilbert space

e Regularity properties (bounded functional evaluation)
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Functional space H

vw-RKHS framework (Carmeli et al., 2006):

e Hilbert space of functions with values in a Hilbert space

e Regularity properties (bounded functional evaluation)

Take two scalar kernels Ry: X x X — R and kg:© x © — R,
construct
XxX — L(g‘fke)

X,Z — R (X, z)lg{ke

Structure: Hy ~ Hp, @ Hy, i.e

Hk = span {I?DC()X) ’ k@(')e)v (X)e) € X x 6}
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Optimization

Optimization problem:

argmin Rg(h) + 7\||/’)||§{K, A>0 (1)
h ek
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Optimization

Solved by L-BFGS-B + smoothing of the local loss.

e Complexity in O(fiterations - (n’m + nm?))
e Smoothing a la Huber: infimal convolution with ||-||?

1/18



Statistical Guarantees

Context of uniform stability in vw-RKHS (Kadri et al., 2015)

Let h* € Hk be the solution of the problem above for the QR
or CSC problem with QMC approximation. For a large class of
kernels,

R(h*) < Rs(h*) + O, (\/1\7]> 10 (Iigf?(\g)>
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Statistical Guarantees

Context of uniform stability in vw-RKHS (Kadri et al., 2015)

Let h* € Hk be the solution of the problem above for the QR
or CSC problem with QMC approximation. For a large class of
kernels,

R(h*) < Rs(h*) + O, (\/1\7]> 10 (E%\?)

e Requires bounded random variables in QR
e Tradeoff between nand m
e Mild hypothesis on the kernels

12/18



Numerical experiments: Infinite Quantile Regression

Crossing penalty: hard or soft constraints.

o dp(0)dP(x)
N

Figure 4: Comparison w/o crossing penalty for IQR.
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Numerical experiments: Infinite Quantile Regression

Crossing penalty: hard or soft constraints.

o dp(0)dP(x)
N

Figure 4: Comparison w/o crossing penalty for IQR.

e Matches state of the art on 20 UCI datasets. (Sangnier
et al, 2016) 13/18



Numerical experiments: Infinite Cost-Sensitive Classification
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e Improves performances
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Figure 5: ICSC vs Independent learning

e Improves performances
e Hard to tune the kernels
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An unsupervised task : Density level
set estimation




Functional learning

Integrated problem: minimize in hyt € Hy x Hp,

1 n
JO ;—n Z max (0,t(0) — h(x;)(0)) — t(0) + %”h(')(e)\@chxdu(e)
i =1
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Functional learning

Integrated problem: minimize in hyt € Hy x Hp,
14 8 : 2
L o 2 max(0,1(0) — h(x;)(0)) — t(0) + 5 IN()(0) 5, dn(®)
i =1

Take (6;)iZ, € (0,1) a QMC sequence, minimize
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Solving in Vector-Valued RKHSs

There exist (o) 7", € R™™ and (B;);_, € R™ such that for
V(x,v) € X x (0, 1),

n m

P O0(v) = 3 Y ek (% X))Rv (v, V)
i=1 j=1

t(v) = > BjRo(v,V))
=
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Numerical experiments: Infinite One-Class SVM

Figure 6: Level set estimation: the v-property is approximately
satisfied. Top: Wilt benchmark; bottom: Spambase dataset.
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Perspectives




Investigate:

e Algorithmic guarantees
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Investigate:

e Algorithmic guarantees

o New regularization term : 3 [|h(-)(6))]| 4,
&

e Hard monotony constraints

e Scaling up : ORFF (Brault et al., 2016)
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