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Abstract

Kernel methods underpin many of the most
successful approaches in data science and
statistics, and they allow representing proba-
bility measures as elements of a reproducing
kernel Hilbert space without loss of informa-
tion. Recently, the kernel Stein discrepancy
(KSD), which combines Stein’s method with
the flexibility of kernel techniques, gained
considerable attention. Through the Stein
operator, KSD allows the construction of
powerful goodness-of-fit tests where it is suf-
ficient to know the target distribution up to
a multiplicative constant. However, the typ-
ical U- and V-statistic-based KSD estima-
tors suffer from a quadratic runtime com-
plexity, which hinders their application in
large-scale settings. In this work, we pro-
pose a Nyström-based KSD acceleration—
with runtime O

(
mn+m3

)
for n samples and

m ≪ n Nyström points—, show its
√
n-

consistency with a classical sub-Gaussian as-
sumption, and demonstrate its applicability
for goodness-of-fit testing on a suite of bench-
marks. We also show the

√
n-consistency of

the quadratic-time KSD estimator.

1 INTRODUCTION

The kernel mean embedding, which involves map-
ping probability distributions into a reproducing ker-
nel Hilbert space (RKHS; Aronszajn 1950) has found
various far-reaching applications in the last 20 years.
For example, it allows to measure the discrepancy
between probability distributions through maximum
mean discrepancy (MMD; Smola et al. 2007; Gretton
et al. 2012), defined as the distance between the corre-
sponding mean embeddings, which underpins powerful
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two-sample tests. MMD is also known as energy dis-
tance (Székely and Rizzo, 2004, 2005; Baringhaus and
Franz, 2004) in the statistics literature; see Sejdinovic
et al. (2013) for the equivalence. We refer to (Muan-
det et al., 2017) for a recent overview of kernel mean
embeddings.

In addition to two-sample tests, testing for goodness-
of-fit (GoF; Ingster and Suslina 2003; Lehmann and
Romano 2021) is also of central importance in data
science and statistics, which involves testing H0 :
Q = P vs. H1 : Q ̸= P based on samples from
an unknown sampling distribution Q and a (fixed
known) target distribution P. Classical GoF tests,
e.g., the Kolmogorov-Smirnov test (Kolmogorov, 1933;
Smirnov, 1948), or the test for normality by Baring-
haus and Henze (1988), usually require explicit knowl-
edge of the target distribution. However, in practi-
cal applications, the target distribution is frequently
only known up to a normalizing constant. Examples
include validating the output of Markov Chain Monte
Carlo (MCMC) samplers (Welling and Teh, 2011; Bar-
denet et al., 2014; Korattikara et al., 2014), or as-
sessing deep generative models (Koller and Friedman,
2009; Salakhutdinov, 2015). In all these examples, one
desires a powerful test, even though the normalization
constant might be difficult to obtain.

A recent approach to tackle GoF testing involves ap-
plying a Stein operator (Stein, 1972; Chen, 2021; Anas-
tasiou et al., 2023) to functions in an RKHS and us-
ing them as test functions to measure the discrepancy
between distributions, referred to as kernel Stein dis-
crepancies (KSD; Chwialkowski et al. 2016; Liu et al.
2016). An empirical estimator of KSD can be used as a
test statistic to address the GoF problem. In particu-
lar, the Langevin Stein operator (Gorham and Mackey,
2015; Chwialkowski et al., 2016; Liu et al., 2016; Oates
et al., 2017; Gorham and Mackey, 2017) in combina-
tion with the kernel mean embedding gives rise to a
KSD on the Euclidean space Rd, which we consider
in this work. As a test statistic, KSD has many de-
sirable properties. In particular, KSD requires only
knowledge of the derivative of the score function of the
target distribution — implying that KSD is agnostic
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to the normalization of the target and therefore does
not require solving, either analytically or numerically,
complex normalization integrals in Bayesian settings.
This property has led to its widespread use, e.g., for
assessing and improving sample quality (Gorham and
Mackey, 2015; Chen et al., 2018, 2019; Futami et al.,
2019; Gorham et al., 2020), validating MCMC meth-
ods (Coullon et al., 2023), comparing deep generative
models (Lim et al., 2019), detecting out-of-distribution
inputs (Nalisnick et al., 2019), assessing Bayesian seis-
mic inversion (Izzatullah et al., 2020), modeling coun-
terfactuals (Martinez-Taboada and Kennedy, 2024),
and explaining predictions (Sarvmaili et al., 2025).
GoF testing with KSDs has been explored on Eu-
clidean data (Liu et al., 2016; Chwialkowski et al.,
2016), discrete data (Yang et al., 2018), point pro-
cesses (Yang et al., 2019), time-to-event data (Fernan-
dez et al., 2020), graph data (Xu and Reinert, 2021),
sequential models (Baum et al., 2023), and functional
data (Wynne et al., 2024). The KSD statistic has
also been extended to the conditional case (Jitkrittum
et al., 2020).

Estimators for Langevin Stein operator-based KSD ex-
ist. But, the classical U-statistic- (Liu et al., 2016) and
V-statistic-based (Chwialkowski et al., 2016) estima-
tors have a runtime complexity that scales quadrati-
cally with the number of samples of the sampling dis-
tribution, which limits their deployment to large-scale
settings. To address this bottleneck, Chwialkowski
et al. (2016) introduced a linear-time statistic that
suffers from low statistical power compared to its
quadratic-time counterpart. Jitkrittum et al. (2017b)
proposed the finite set Stein discrepancy (FSSD), a
linear-time approach that replaces the RKHS-norm
by the L2-norm approximated by sampling; the sam-
pling can either be random (FSSD-rand) or optimized
w.r.t. a power proxy (FSSD-opt). Another approach
(Huggins and Mackey, 2018) is employing the random
Fourier feature (RFF; Rahimi and Recht 2007; Sripe-
rumbudur and Szabó 2015) method to accelerate the
KSD estimation. However, it is known (Chwialkowski
et al., 2015, Proposition 1) that the resulting statistic
fails to distinguish a large class of measures. Huggins
and Mackey (2018) generalize the idea of replacing the
RKHS-norm by going from L2-norms to Lp ones, to
obtain feature Stein discrepancies. They present an
efficient approximation, random feature Stein discrep-
ancies (RFSD), which is a (near-)linear time estima-
tor. However, successful deployment of the method
depends on a good choice of parameters, which, while
the authors provide guidelines, can be challenging to
select and tune in practice.

Our work alleviates these severe bottlenecks. We
employ the Nyström method (Williams and Seeger,

2001) to accelerate KSD estimation and show the
√
n-

consistency of our proposed estimator. The main tech-
nical challenge is that the Stein kernel (induced by
the Langevin Stein operator and the original kernel) is
typically unbounded while existing statistical Nyström
analysis (Rudi et al., 2015; Chatalic et al., 2022; Sterge
and Sriperumbudur, 2022; Kalinke and Szabó, 2023;
Chatalic et al., 2025) usually considers bounded ker-
nels. To tackle unbounded kernels, we select a classical
sub-Gaussian assumption, which we impose on the fea-
ture map associated to the kernel, and show that exist-
ing methods of analysis can successfully be extended
to handle this novel case. In this sense, our work,
besides Della Vecchia et al. (2021), which requires a
similar sub-Gaussian condition for analyzing empirical
risk minimization on random subspaces, is a first step
in analyzing the consistency of the unbounded case in
the Nyström setting.

Our main contributions are the following.

1. We introduce a Nyström-based acceleration of ker-
nel Stein discrepancy. The proposed estimator
runs in O

(
mn+m3

)
time, with n samples and

m≪ n Nyström points.

2. We prove the
√
n-consistency of our estimator in

a classical sub-Gaussian setting, which extends (in
a non-trivial fashion) existing results for Nyström-
based methods (Rudi et al., 2015; Chatalic et al.,
2022; Sterge and Sriperumbudur, 2022; Kalinke
and Szabó, 2023) focusing on bounded kernels.

3. We perform an extensive suite of experiments
to demonstrate the applicability of the proposed
method. Our proposed approach achieves compet-
itive results throughout all experiments.

The paper is structured as follows. We introduce the
notations used throughout the article (Section 2) fol-
lowed by recalling the classical quadratic-time KSD
estimators (Section 3). In Section 4.1, we detail our
proposed Nyström-based estimator, alongside with its
adaptation to a modified wild bootstrap goodness-of-
fit test (Section 4.2), and our theoretical guarantees
(Section 4.3). Experiments demonstrating the effi-
ciency of our Nyström-KSD estimator are provided in
Section 5. Limitations are in Section 6. Proofs and ad-
ditional experiments are deferred to the appendices.

2 NOTATIONS

In this section, we introduce our notations [N ], ≲, ≳,
≍, 1A, {{·}}, 1n, 0n In, A−, AT, A−1, ∇x, M+

1 (X ),
Pn, P1 ⊗ P2, OP(·), B(Hk), k, Hk, PU , ∥·∥op, L(Hk),

A∗, A
1
2 , tr, µk, f⊗g, CP,k, CP,k,λ, NP,k, ∥·∥Lr(P), ∥·∥ψr

.

Let [N ] := {1, . . . , N} for a positive integer N . For



Florian Kalinke, Zoltán Szabó, Bharath K. Sriperumbudur

a1, a2 ≥ 0, a1 ≲ a2 (resp. a1 ≳ a2) means that a1 ≤
ca2 (resp. a1 ≥ c′a2) for an absolute constant c > 0
(resp. c′ > 0), and we write a1 ≍ a2 iff. a1 ≲ a2 and
a1 ≳ a2. We write 1A for the indicator function of a set
A and {{·}} for a multiset. The n-dimensional vector

of ones is denoted by 1n = (1, . . . , 1)
T ∈ Rn , that of

n zeros by 0n = (0, . . . , 0)
T ∈ Rn. The identity matrix

is In ∈ Rn×n. For a matrix A ∈ Rd1×d2 , A− ∈ Rd2×d1
denotes its (Moore-Penrose) pseudo-inverse, and AT ∈
Rd2×d1 stands for the transpose of A. We write A−1 ∈
Rd×d for the inverse of a non-singular matrix A ∈
Rd×d. For a differentiable function f : Rd → R , let

∇xf(x) =
(
∂f(x)
∂xi

)d
i=1

∈ Rd.

Let (X , τX ) be a topological space and B (τX ) the
corresponding Borel σ-algebra. Probability measures
considered in this article are meant w.r.t. the mea-
surable space (X ,B (τX )) and are written as M+

1 (X );
for instance, the set of Borel probability measures on
Rd is M+

1

(
Rd
)
. The n-fold product measure of P ∈

M+
1 (X ) is denoted by Pn ∈ M+

1 (Xn). The product of
P1 ∈ M+

1 (X1) and P2 ∈ M+
1 (X2) is written as P1⊗P2

(∈ M+
1 (X1 × X2)), where (X1, τX1) and (X2, τX2) are

topological spaces. For a sequence of i.i.d. real-valued
random variables Xn ∼ P ∈ M+

1 (R) and a sequence of
positive rn-s, Xn = OP(rn) means that Xn

rn
is bounded

in probability. The unit ball in a Hilbert space H is
denoted by B(H) = {f ∈ H | ∥f∥H ≤ 1}. The repro-
ducing kernel Hilbert space with k : Rd × Rd → R as
the reproducing kernel is denoted by Hk. Through-
out the paper, k is assumed to be measurable and
Hk to be separable.1 Given a closed linear subspace
U ⊆ Hk, the (orthogonal) projection of h ∈ Hk on
U is denoted by PUh ∈ U ; u = PUh is the unique
vector such that h − u ⊥ U . For any u ∈ U ,
∥h− PUh∥Hk

≤ ∥h− u∥Hk
, that is, PUh is the closest

element in U to h. A linear operator A : Hk → Hk is
called bounded if ∥A∥op := sup∥h∥Hk

=1 ∥Ah∥Hk
< ∞;

the set of Hk → Hk bounded linear operators is de-
noted by L(Hk). An A ∈ L(Hk) is called positive
(shortly A ≥ 0) if it is self-adjoint (A∗ = A, where
A∗ ∈ L(Hk) is defined by ⟨Af, g⟩Hk

= ⟨f,A∗g⟩Hk
for

all f, g ∈ Hk), and ⟨Ah, h⟩Hk
≥ 0 for all h ∈ Hk.

If A ≥ 0, then there exists a unique B ≥ 0 such
that B2 = A; we write B = A

1
2 and call B the

square root of A. An A ∈ L(Hk) is called trace-

class if
∑
i∈I⟨(A∗A)

1
2 ei, ei⟩Hk

< ∞ for some count-
able orthonormal basis (ONB) (ei)i∈I of Hk, and in
this case tr(A) :=

∑
i∈I⟨Aei, ei⟩Hk

< ∞.2 For a self-

1For instance, a continuous kernel k : Rd ×Rd → R im-
plies both properties; see Steinwart and Christmann (2008,
Lemma 4.33) for separability.

2The trace-class property and the value of tr(A) is in-
dependent of the specific ONB chosen. The separability of
Hk implies the existence of a countable ONB in it.

adjoint trace-class operator A with eigenvalues (λi)i∈I ,
tr(A) =

∑
i∈I λi. An operator A ∈ L(Hk) is called

compact if {Ah |h ∈ B(Hk)} is compact, where · de-
notes the closure. A trace class operator is com-
pact, and a compact positive operator A has largest
eigenvalue ∥A∥op. For any A ∈ L(Hk), it holds that

∥A∗A∥op = ∥A∥2op (which is called the C∗ property).

The mean embedding of a probability measure P ∈
M+

1 (Rd) into the RKHS associated to kernel k : Rd ×
Rd → R is µk(P) =

∫
Rd k (·,x) dP(x) ∈ Hk, where the

integral is meant in Bochner’s sense (Diestel and Uhl,
1977, Chapter II.2). The mean element µk(P) exists
iff.
∫
Rd ∥k (·,x)∥Hk

dP(x) <∞ (Diestel and Uhl, 1977,
p. 45; Theorem 2).

Let f, g ∈ Hk. Their tensor product is written as
f ⊗g ∈ Hk⊗Hk, where Hk⊗Hk is the tensor product
Hilbert space; further, f⊗g : Hk → Hk defines a rank-
one operator by h 7→ f ⟨g, h⟩Hk

. It is known that Hk⊗
Hk is also an RKHS (Berlinet and Thomas-Agnan,
2004, Theorem 13). Given a probability measure P ∈
M+

1

(
Rd
)

and a kernel k : Rd×Rd → R, the uncentered
covariance operator

CP,k =

∫
Rd

k (·,x) ⊗ k (·,x) dP(x) ∈ Hk ⊗Hk

exists if
∫
X ∥k (·,x)∥2Hk

dP(x) < ∞; CP,k is a positive
trace-class operator. We define CP,k,λ = CP,k + λI,
where I denotes the identity operator and λ > 0.
The effective dimension of P ∈ M+

1

(
Rd
)

is defined

as NP,k(λ) := tr
(
CP,kC

−1
P,k,λ

)
≤ tr(CP,k)

λ .3 With r ≥ 1

and a real-valued random variable X : (Ω,A,P) →
(R,B(τR)), where B(τR) denotes the Borel σ-field

on R, let ∥X∥Lr(P) =
[∫

Ω
|X(ω)|rdP(ω)

] 1
r . For

r ∈ {1, 2}, let ψr(u) = eu
r − 1 and ∥X∥ψr

:=

inf
{
C > 0 | EX∼Pψr

(
|X|
C

)
≤ 1
}

. A real-valued ran-

dom variable X ∼ P ∈ M+
1 (R) is called sub-

exponential if ∥X∥ψ1
< ∞ and sub-Gaussian if

∥X∥ψ2
< ∞. In the following, we specialize Defini-

tion 2 by Koltchinskii and Lounici (2017) stated for
Banach spaces to (reproducing kernel) Hilbert spaces
by using the Riesz representation theorem. A cen-
tered Hk-valued random variable X ∼ Q ∈ M+

1 (Hk)
is called sub-Gaussian iff. there exists a universal con-
stant C > 0 such that for all u ∈ Hk:∥∥⟨X,u⟩Hk

∥∥
ψ2

≤ C
∥∥⟨X,u⟩Hk

∥∥
L2(Q)

<∞. (1)

3 This inequality is implied by tr
(
CP,kC

−1
P,k,λ

)
=∑

i∈I
λi

λi+λ
≤ 1

λ

∑
i∈I λi =

tr(CP,k)
λ

, where (λi)i∈I denote

the eigenvalues of CP,k.
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3 PROBLEM FORMULATION

We now introduce our quantity of interest, the kernel
Stein discrepancy. Let Hd

k := ×di=1Hk be the prod-
uct RKHS with inner product defined by ⟨f ,g⟩Hd

k
=∑d

i=1 ⟨fi, gi⟩Hk
for f = (fi)

d
i=1 ,g = (gi)

d
i=1 ∈ Hd

k.

Let P,Q ∈ M+
1

(
Rd
)

be fixed; we refer to P as the
target distribution and to Q as the sampling distribu-
tion. Assume that P is absolutely continuous w.r.t.
the Lebesgue measure and let p be the correspond-
ing density (w.r.t. Lebesgue measure). We assume
that p is continuously differentiable with support Rd,
p(x) > 0 for all x ∈ Rd, and lim∥x∥→∞ f(x)p(x) = 0
for all f ∈ Hk. The last property holds for in-
stance if p is bounded and lim∥x∥→∞ f(x) = 0 for
all f ∈ Hk. Further, we assume that k is continu-
ously differentiable in both arguments. This condi-
tion will imply the measurability of hp and the sep-
arability of Hhp

, both quantities defined below. The
Stein operator (Gorham and Mackey, 2015, (4)) is de-

fined as (Tpf) (x) = ⟨∇x[log p(x)], f(x)⟩+∑d
i=1

∂fi(x)

∂xi(
f ∈ Hd

k, x ∈ Rd
)
. With this definition at hand,

(Tpf) (x) = ⟨f , ξp(x)⟩Hd
k
,

ξp(x) = [∇x (log p(x)) k (·,x)

+ ∇xk (·,x)] ∈ Hd
k (2)

for all f ∈ Hd
k and x ∈ Rd, with kernel (for x,y ∈ Rd)

hp(x,y) = ⟨ξp(x), ξp(y)⟩Hd
k

= ⟨hp(·,x), hp(·,y)⟩Hhp
; (3)

notice that ξp(x) and hp(·,x) map to different feature
spaces (Hd

k and Hhp
, respectively) but yield the same

kernel hp, which, with (2), takes the explicit form

hp(x,y) = ⟨∇x log p(x),∇y log p(y)⟩Rd k(x,y)+

+ ⟨∇y log p(y),∇xk(x,y)⟩Rd +

+ ⟨∇x log p(x),∇yk(x,y)⟩Rd +

d∑
i=1

∂2k(x,y)

∂xi∂yi
.

The kernel Stein discrepancy (KSD; Chwialkowski
et al. 2016; Liu et al. 2016) then is defined as an inte-
gral probability metric (Zolotarev, 1983; Müller, 1997)

Sp(Q) = sup
f∈B(Hd

k)
EX∼P [Tpf(X)]︸ ︷︷ ︸

(a)
= 0

−EX∼Q [Tpf(X)]

= sup
f∈B(Hd

k)
⟨f ,EX∼Qξp(X)⟩Hd

k

= ∥EX∼Qξp(X)∥Hd
k

(b)
= ∥EX∼Qhp (·, X)∥Hhp

, (4)

where (a) holds by the construction of KSD and (b)
follows from (3).

Given a sample Q̂n = {xi}ni=1 ∼ Qn, the popular V-
statistic-based estimator (Chwialkowski et al., 2016,
Section 2.2) is obtained by replacing Q with the em-

pirical measure Q̂n; it takes the form

S2
p

(
Q̂n
)

=
1

n2

n∑
i,j=1

hp(xi,xj), (5)

and can be computed in O
(
n2
)

time. The correspond-
ing U-statistic-based estimator (Liu et al., 2016, (14))
has a similar expression but omits the diagonal terms,

that is, S2
p,u

(
Q̂n
)

= 1
n(n−1)

∑n
1≤i ̸=j≤n hp(xi,xj); it

also has a runtime cost of O
(
n2
)
. For large-scale ap-

plications, the quadratic runtime is a significant bot-
tleneck; this is the shortcoming we tackle in the fol-
lowing.

4 PROPOSED NYSTRÖM-KSD

To enable the efficient estimation of (4), we propose a
Nyström technique-based estimator in Section 4.1 and
an accelerated wild bootstrap test in Section 4.2. In
Section 4.3, our consistency results are collected.

4.1 The Nyström-KSD Estimator

We consider a subsample Q̃m = {{x̃1, . . . , x̃m}} of size
m (sampled with replacement), the so-called Nyström

sample, of the original sample Q̂n = {x1, . . . ,xn};
the tilde indicates a relabeling. The best approx-
imation of Sp(Q) in RKHS-norm-sense, when using
m Nyström samples, can be obtained by consider-
ing the orthogonal projection of EX∼Qhp (·, X) onto
Hhp,m := span {hp (·, x̃i) | i ∈ [m]} ⊂ Hhp

, with fea-
ture map hp (·, x̃i) and associated kernel hp defined in
(3). As Q is unknown in practice and only available via

samples Q̂n ∼ Qn, we consider the orthogonal projec-
tion of EX∼Q̂n

hp (·, X) onto Hhp,m instead. In other
words, we aim to find the weights α = (αi)

m
i=1 ∈ Rm

that correspond to the minimum norm solution of the
cost function

min
α∈Rm

∥∥∥∥∥ 1

n

n∑
i=1

hp (·,xi)︸ ︷︷ ︸
=EX∼Q̂n

hp(·,X)

−
m∑
i=1

αihp (·, x̃i)
∥∥∥∥∥
Hhp

, (6)
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which gives rise to the squared KSD estimator4

S̃2
p

(
Q̂n
)

:=

∥∥∥∥∥
m∑
i=1

αihp (·, x̃i)
∥∥∥∥∥
2

Hhp ,m

=
∥∥∥PHhp,m

EX∼Q̂n
hp (·, X)

∥∥∥2
Hhp,m

. (7)

Lemma 1 (Nyström-KSD Estimator). The squared
KSD estimator (7) takes the form

S̃2
p

(
Q̂n
)

= βT
pK

−
hp,m,m

βp, (8)

with βp = 1
nKhp,m,n1n ∈ Rm, Gram matrix

Khp,m,m = [hp (x̃i, x̃j)]
m
i,j=1 ∈ Rm×m, and Khp,m,n =

[hp (x̃i,xj)]
m,n
i,j=1 ∈ Rm×n.

Remark 1.

(a) Runtime complexity. The computation of
(8) consists of calculating βp, pseudo-inverting
Khp,m,m, and obtaining the quadratic form

βT
pK

−
hp,m,m

βp. The calculation of βp requires

O(mn) operations, due to the multiplication of an
m× n matrix with a vector of length n. Inverting
them×m matrix Khp,m,m costs O(m3),5 dominat-
ing the cost of O(m2) needed for the computation
of Khp,m,m. The quadratic form βT

pK
−
hp,m,m

βp

has a computational cost of O
(
m2
)
. Hence, (8)

can be computed in O
(
mn+m3

)
, which means

that for m = o
(
n2/3

)
, our proposed Nyström-KSD

estimator guarantees an asymptotic speedup.

(b) Comparison of (5) and (8). The Nyström esti-
mator (8) recovers the V-statistic-based estimator
(5) when no subsampling is performed and pro-
vided that Khp,n,n is invertible.

(c) Comparison to Chatalic et al. (2022). We
note that the estimator (8) corresponds precisely
to Chatalic et al. (2022, (5)). We consider the
analysis of this known estimator in the case of
unbounded feature maps—which arise in the KSD
setting—as one of our core contributions, which
we detail in Section 4.3.

4.2 Nyström Bootstrap Testing

In this section, we discuss how one can use (8) for
accelerated goodness-of-fit testing. We recall that the
goal of goodness-of-fit testing is to test H0 : Q = P ver-
sus H1 : Q ̸= P, given samples Q̂n = {x1, . . . ,xn} and
target distribution P. Recall that KSD relies on score

4S̃2
p

(
Q̂n

)
indicates dependence on Q̂n.

5Although faster algorithms for (pseudo) matrix inver-
sion exist, we consider the runtime that one typically en-
counters in practice.

functions (∇x[log p(x)]); hence knowing P up to a mul-
tiplicative constant is enough. To use the Nyström-
based estimator (8) for goodness-of-fit testing, we pro-
pose to obtain its null distribution by a Nyström-
based bootstrap procedure. Our method builds on the
existing test for the V-statistic-based KSD, detailed
in Chwialkowski et al. (2016, Section 2.2), which we
quote in the following. Define the bootstrapped statis-
tic by

Bn =
1

n2

n∑
i,j=1

wiwjhp (xi,xj) , (9)

with wi ∈ {−1, 1} an auxiliary Markov chain defined
by

wi = 1(Ui>0.5)wi−1 − 1(Ui≤0.5)wi−1, (10)

where Ui
i.i.d.∼ Unif(0, 1), that is, wi changes sign with

probability 0.5. The test procedure is as follows.

1. Calculate the test statistic (5).

2. Obtain D wild bootstrap samples {Bn,i}Di=1 with
(9) and estimate the 1 − α empirical quantile of
these samples.

3. Reject the null hypothesis if the test statistic (5)
exceeds the quantile.

(9) requires O
(
n2
)

computations, which yields a total

cost of O
(
Dn2

)
for obtaining D bootstrap samples,

rendering large-scale goodness-of-fit tests unpractical.

We propose the Nyström-based bootstrap

BNys
n =

1

n2
wTKhp,n,mK−

hp,m,m
Khp,m,nw, (11)

with w = (wi)
n
i=1 ∈ Rn collecting the wi-s (i ∈ [n])

defined in (10); Khp,n,m (= KT
hp,m,n

) and Khp,m,m

are defined as in Lemma 1. The approximation
is based on the fact (Williams and Seeger, 2001)
that Khp,n,mK−

hp,m,m
Khp,m,n is a low-rank approxi-

mation of Khp,n,n, that is, Khp,n,mK−
hp,m,m

Khp,m,n ≈
Khp,n,n. Hence, our proposed procedure (11) ap-
proximates (9) but reduces the cost from O

(
n2
)

to

O
(
nm+m3

)
if one computes from left to right (also

refer to Remark 1(a)); in the case of m = o
(
n2/3

)
this

guarantees an asymptotic speedup. We obtain a total
cost of O

(
D
(
nm+m3

))
for obtaining the wild boot-

strap samples. This acceleration allows KSD-based
goodness-of-fit tests to be applied on large data sets.

4.3 Guarantees

This section is dedicated to the statistical behavior of
the proposed Nyström-KSD estimator (8).

The existing analysis of Nyström estimators (Rudi
et al., 2015; Chatalic et al., 2022; Sterge and
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Sriperumbudur, 2022; Kalinke and Szabó, 2023)
considers bounded kernels only. Indeed, if
supx∈Rd ∥hp (·,x)∥Hhp

< ∞, the consistency of (8) is

implied by Chatalic et al. (2022, Theorem 4.1), which
we include here for convenience of comparison. In the
following, we denote the randomness in the choice of

Nyström samples by (ij)
m
j=1

i.i.d.∼ Unif([n]) =: Λ, which
means that x̃j = xij with j ∈ [m].

Theorem 1 (Bounded case). Assume the setting of
Lemma 1, CQ,hp

̸= 0, m ≥ 4 Nyström samples, and a
bounded Stein feature map (supx∈Rd ∥hp (·,x)∥Hhp

=:

K < ∞). Then, for any δ ∈ (0, 1), it holds with
(Qn ⊗ Λm)-probability of at least 1 − δ that∣∣∣Sp(Q) − S̃p

(
Q̂n
)∣∣∣ ≤ c1√

n
+
c2
m

+
c3
√

log m
δ

m

√
NQ,hp

(
12K2 log m

δ

m

)
,

when m ≥ max
(

67, 12K2
∥∥CQ,hp

∥∥−1

op

)
log(m/δ),

where c1, c2, and c3 are positive constants.

However, in practice, the feature map of KSD is typ-
ically unbounded and Theorem 1 is not applicable,
as it is illustrated in the following example with the
frequently-used Gaussian kernel.

Example 1 (KSD yields unbounded kernel). Con-
sider univariate data (d = 1), unnormalized target

density p(x) = e−x
2/2 (corresponding to P = N (0, 1)),

and (i) the RBF kernel k(x, y) = exp
(
−γ(x− y)2

)
with γ > 0, or (ii) the IMQ kernel k(x, y) =(
c2 + (x− y)2

)−β
with β, c > 0. By using (3), di-

rect calculation yields (i) ∥ξp(·, x)∥2Hk
= x2 + 2γ

x→∞→
∞ in the first, and (ii) ∥ξp(·, x)∥2Hk

= x2c2β −
2βc2(β−1) x→∞→ ∞ in the second case.

Remark 2. In fact, a more general result holds: If
one considers a bounded continuously differentiable
translation-invariant kernel k, the induced Stein kernel
is only bounded provided that the target density p(x)

has tails that are no thinner than e−
∑d

i=1 |xi| (Hagrass
et al., 2025, Remark 2), which clearly rules out Gaus-
sian targets.

For analyzing the setting of unbounded feature maps,
we make the following assumption.

Assumption 1. The centered Stein feature map
h̄p (·, X) = hp (·, X) − EX∼Qhp (·, X) with the sam-
pling distribution Q ∈ M+

1

(
Rd
)
is sub-Gaussian in

the sense of (1), that is,∥∥∥〈h̄p (·, X) , u
〉
Hhp

∥∥∥
ψ2

≲
∥∥∥〈h̄p (·, X) , u

〉
Hhp

∥∥∥
L2(Q)

<∞

holds for all u ∈ Hhp
, with a u-independent absolute

constant in ≲.

Example 2 (Applicability of Assumption 1). In the
simple case d = 1, k(x, y) = xy (Hk = R), and tar-
get measure P = N (0, 1), Assumption 1 is satisfied,
for instance, for Q = Unif

(
−
√

3,
√

3
)
. The details

are as follows. From (2), ξp(·, x) = hp(·, x) = 1 − x2

(x ∈ R). We note that EX∼Qhp(·, X) = 0 implies that
h̄p(·, x) = hp(·, x) and we obtain

∥∥⟨hp(·, X), u⟩R
∥∥
ψ2

=

|u|
∥∥1 −X2

∥∥
ψ2

(a)

≤ |u|c1
(b)
= |u|c1c2

∥∥1 −X2
∥∥
L2(Q)

≲∥∥⟨hp(·, X), u⟩R
∥∥
L2(Q)

. The boundedness of X implies

the sub-Gaussianity (in the real-valued sense) of 1−X2

in (a); hence,
∥∥1 −X2

∥∥
ψ2

≤ c1. In (b), we let

c2 =
∥∥1 −X2

∥∥−1

L2(Q)
.

We elaborate further on Assumption 1 in Remark 3(c),
after we state our following main result.

Theorem 2 (Consistency of Nyström-KSD). Let As-
sumption 1 hold, CQ,h̄p

̸= 0, and assume the setting of
Lemma 1. Then, for any δ ∈ (0, 1) with (Qn ⊗ Λm)-
probability of at least 1 − δ it holds that

∣∣∣Sp(Q) − S̃p

(
Q̂n
)∣∣∣ ≲

√
tr
(
CQ,h̄p

)
log(6/δ)

n

+

√√√√ tr
(
CQ,h̄p

)
log(6/δ)

n

+

√
tr
(
CQ,h̄p

)
log(12n/δ) log(12/δ)

m

×

√√√√√NQ,h̄p

c tr
(
CQ,h̄p

)
m


when m ≳ max

{∥∥∥CQ,h̄p

∥∥∥−1

op
tr
(
CQ,h̄p

)
, log(12/δ)

}
,

where c > 1 is a constant.

To interpret the consistency guarantee of Theorem 2,
we consider the three terms on the r.h.s. w.r.t. the
magnitude of m. The first two terms converge with
O
(
n−1/2

)
, independent of the choice of m. By using

the universal upper bound NQ,h̄p

(
c tr(CQ,h̄p)

m

)
≲ m

on the effective dimension, the last term reveals that
an overall rate of O

(
n−1/2

)
can only be achieved with

further assumptions regarding the rate of decay of the
effective dimension if one also requires m = o

(
n2/3

)
— as is necessary for a speed-up, see Remark 1(a).
Indeed, the rate of decay of the effective dimension
can be linked to the rate of decay of the eigenvalues
of the covariance operator (Della Vecchia et al., 2021,
Proposition 4, 5), which is known to frequently decay
exponentially, or, at least, polynomially. In this sense,
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the last term acts as a balance, which takes the char-
acteristics of the data and of the kernel into account.

The next corollary shows that an overall rate of
O
(
n−1/2

)
can be achieved, depending on the prop-

erties of the covariance operator.

Corollary 1. In the setting of Theorem 2, assume that
the spectrum of the covariance operator CQ,h̄p

decays

either (i) polynomially, implying that NQ,h̄p
(λ) ≲ λ−γ

for some γ ∈ (0, 1], or (ii) exponentially, implying
that, NQ,h̄p

(λ) ≲ log(1 + c1
λ ) for some c1 > 0. Then it

holds that∣∣∣Sp(Q) − S̃p

(
Q̂n
)∣∣∣ = OQn⊗Λm

(
1√
n

)
,

assuming that the number of Nyström points sat-

isfies (i) m ≳ n
1

2−γ log
1

2−γ (12n/δ) log
1

2−γ (12/δ)
in the first case, or (ii) m ≳
√
n

(
log

(
1 + c1n

c tr(CQ,h̄p)

)
log(12n/δ) log(12/δ)

)1/2

in

the second case.

To interpret these rates—see Remark 3(d)—, we ob-
tain the (matching)

√
n-consistency of the quadratic

time estimator (5) in our following result.

Theorem 3 (Consistency of KSD). Assume that∥∥∥∥hp (·, X)∥Hhp

∥∥∥
ψ2

< ∞ and let Q̂n = {X1, . . . , Xn},

where {Xi}i∈[n]
i.i.d.∼ Q. Then it holds that∣∣∣Sp(Q) − Sp

(
Q̂n
)∣∣∣ = OQn

(
1√
n

)
.

The following example illustrates that, in some cases,

the assumption
∥∥∥∥hp (·, X)∥Hhp

∥∥∥
ψ2

< ∞ can be veri-

fied analytically.

Example 3 (Assumption
∥∥∥∥hp (·, X)∥Hhp

∥∥∥
ψ2

< ∞).

Assume that d = 1, k = exp
(
−γ(x− y)2

)
(γ >

0), target measure P = N (0, 1), and samples

X,X1, . . . , Xn
i.i.d.∼ Q with ∥X∥ψ2

<∞. Then∥∥∥∥hp(·, X)∥Hhp

∥∥∥2
ψ2

(a)
= ∥hp(X,X)∥ψ1

(b)
=
∥∥X2 + 2γ

∥∥
ψ1

(c)

≤
∥∥X2

∥∥
ψ1

+ ∥2γ∥ψ2

(d)
= ∥X∥ψ2

+
2γ√
log 2

<∞,

with the following details. Lemma C.2(iv) and the re-
producing property yield (a). (b) follows from the ex-
plicit form of hp given in Example 1(i). The triangle
inequality gives (c) and (d) follows from the definition
of the ψ2-norm using that 2γ is non-random.

In this setting, similar computations using Exam-
ple 1(ii) show that the assumption is also satisfied with
the IMQ kernel.

A few remarks are in order.

Remark 3.

(a) Runtime benefit. Recall that — see Remark 1(a)
—, our proposed Nyström estimator (8) requires
m = o

(
n2/3

)
Nyström samples to achieve a speed-

up. Hence, in the case of polynomial decay, an
asymptotic speed-up with a statistical accuracy that
matches the quadratic time estimator (5) is guar-
anteed for γ < 1/2; in the case of exponential de-
cay, large enough n always suffices.

(b) Comparison of Theorem 1 and Theorem 2.
Recall that both theorems target precisely the same
estimators, Chatalic et al. (2022, (5)) and (8), re-
spectively. We note that in the finite-dimensional
case, every bounded random variable is also sub-
Gaussian. This property does not carry over to
sub-Gaussianity in the infinite-dimensional case;
see the remark after Della Vecchia et al. (2021,
Definition 1). In this sense, the assumptions of
both statements are not directly comparable. Still,
the takeaway of both results—with these different
sets of conditions—is the same.

(c) Sub-Gaussian assumption. Key to the proof of
Theorem 2 is having an adequate notion of non-
boundedness of the feature map. One approach—
common for controlling unbounded real-valued ran-
dom variables— is to impose a sub-Gaussian as-
sumption. In Hilbert spaces, various definitions
of sub-Gaussian behavior have been investigated
(Talagrand, 1987; Fukuda, 1990; Antonini, 1997);
see Giorgobiani et al. (2020) for a recent sur-
vey. Among the definitions of sub-Gaussianity, we
carefully selected Koltchinskii and Lounici (2017,
Def. 2).6 Specifically, this assumption allows us to
derive our key Lemma B.1 and Lemma B.3. The
former is similar to Rudi et al. (2015, Lemma 6),
which is typically employed for Nyström analysis
in the bounded case (Chatalic et al., 2022; Sterge
and Sriperumbudur, 2022; Kalinke and Szabó,
2023), but our result applies to the sub-Gaussian
setting. The main technical challenge we resolve
is transforming our setting to a form in which ex-
isting concentration results can be leveraged. Es-
pecially the case of P ̸= Q requires special care,
which we tackle by systematically using the cen-
tered covariance operator CQ,h̄p

; we refer to the re-

spective proof for details.7 The latter, Lemma B.3,
intuitively states that norms of sub-Gaussian vec-

6The condition is also referred to as sub-Gaussian in
Fukuda’s sense (Giorgobiani et al., 2020, Def. 1).

7We note that an analysis of the centered setting is also
challenging in the bounded case; for instance, Sterge and
Sriperumbudur (2022) tackle the resulting difficulties (in
case of kernel PCA) with U-statistics, of which our method
is independent.
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tors whitened by C
−1/2

Q,h̄p,λ
inherit the sub-Gaussian

property. Together, these lemmas open the door to
proving Theorem 2.

(d) Comparison of Theorem 2 and Theorem 3.

With the weaker condition
∥∥∥∥hp (·, X)∥Hhp

∥∥∥
ψ2

<

∞ (implied by Assumption 1, see Lemma B.3),
Theorem 3 shows that the quadratic time estimator
(5) converges with rate O

(
n−1/2

)
. Our Nyström

result, Theorem 2 with Corollary 1, shows that a
matching rate can be achieved (given an appropri-
ate decay of the effective dimension) with m =
Θ̃(

√
n); this choice of m satisfies m = o

(
n2/3

)
and thus implies an asymptotic speedup by (a).

(e) General KSD framework. We note that our
results also hold in the general KSD framework
(Hagrass et al., 2025) but we present them on Rd,
which one arguably most frequently encounters in
practice, to simplify exposition.

5 EXPERIMENTS

We verify the viability of our proposed method, ab-
breviated as N-KSD in this section, by comparing
its runtime and its power to existing methods: the
quadratic time KSD (Liu et al., 2016; Chwialkowski
et al., 2016), the linear-time goodness-of-fit test fi-
nite set Stein discrepancy (FSSD; Jitkrittum et al.
2017b), RFF-based KSD approximations (Huggins
and Mackey, 2018), and the linear-time goodness-of-
fit test using random feature Stein discrepancy (L1
IMQ, L2 SechExp; Huggins and Mackey 2018).8 For
FSSD, we consider randomized test locations (FSSD-
rand) and optimized test locations (FSSD-opt); the
optimality is meant w.r.t. a power proxy detailed in
the cited work. For all competitors, we use the set-
tings and implementations provided by the respec-
tive authors. We use the well-known Gaussian kernel
k(x,y) = exp

(
−γ ∥x− y∥2Rd

)
(γ > 0) with the me-

dian heuristic (Garreau et al., 2018), and the IMQ

kernel k(x,y) =
(
c2 + ∥x− y∥2Rd

)−β
(Gorham and

Mackey, 2017), with the choices of β, c > 0 detailed
in the respective experiment description. To approx-
imate the null distribution of N-KSD, we perform a
bootstrap with (11), settingD = 500. To allow an easy
comparison, our experiments replicate goodness-of-fit
testing experiments from Chwialkowski et al. (2016);
Jitkrittum et al. (2017b) and Huggins and Mackey
(2018). For additional results, we refer to Appendix D.
We ran all experiments on a PC with Ubuntu 20.04,
124GB RAM, and 32 cores with 2GHz each.

8The code replicating our experiments is available at
https://github.com/FlopsKa/nystroem-ksd.

Runtime. We set m = 4
√
n for N-KSD to match

the settings in our other experiments. As per recom-
mendation, we fix the number of test locations J = 10
for L1 IMQ, L2 SechExp, Cauchy RFF, Gauss RFF,
and both FSSD methods. The data is randomly gen-
erated with d = 10 dimensions. We note that the
dimensionality enters the complexity only through the
kernel evaluation; the dependence is linear in our case.
The runtime, see Figure 1(a) for the average over 10
repetitions (the error bars indicate the estimated 95%
quantile), behaves as predicted by the complexity anal-
ysis. The proposed approach runs orders of magni-
tudes faster than the quadratic time KSD estimator
(5). From n = 1500, all (near-)linear-time approaches
are faster (excluding FSSD-opt, which has a relatively
large fixed cost). Still, N-KSD achieves competitive
runtime results even for n = 5000.

Laplace vs. standard normal. We fix the target
distribution P = N (0d, Id) and obtain n = 1000 sam-

ples from the alternative Q = Lap
(

0, 1√
2

)d
, a prod-

uct of d Laplace distributions. We test H0 : Q = P
vs. H1 : Q ̸= P with a level of α = 0.05. We set
the kernel parameters c and β for KSD IMQ and N-
KSD IMQ as per the recommendation for L1 IMQ in
the corresponding experiment by Huggins and Mackey
(2018). Figure 1(b) reports the power (obtained over
500 draws of the data) of the different approaches.
KSD Gauss and its approximation N-KSD Gauss per-
form similarly but their power diminishes from d = 3.
KSD IMQ achieves full power for all tested dimensions
and performs best overall. N-KSD IMQ (m = 4

√
n)

achieves comparable results, with a small decline from
D = 15. Our proposed method outperforms all exist-
ing KSD accelerations.

Student-t vs. standard normal. The setup is simi-
lar to that of the previous experiment, but we consider
samples from Q a multivariate student-t distribution
with 5 degrees of freedom, set n = 2000, and repeat
the experiment 250 times to estimate the power. We
show the results in Figure 1(c). All approaches em-
ploying the Gaussian kernel quickly loose in power; all
techniques utilizing the IMQ kernel, including N-KSD
IMQ, achieve comparably high power throughout.

Restricted Boltzmann machine (RBM). Similar
to Liu et al. (2016); Jitkrittum et al. (2017b), we con-
sider the case where the target P is the non-normalized
density of an RBM with 50 visible and 40 hidden di-
mensions; the samples Q̂n are obtained from the same
RBM perturbed by independent Gaussian noise with
variance σ2. For σ2 = 0, H0 : Q = P holds, and for
σ2 > 0, implying that the alternative H1 : Q ̸= P
holds, the goal is to detect that the n = 1000 sam-
ples come from a forged RBM. For the IMQ kernel

https://github.com/FlopsKa/nystroem-ksd
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Figure 1: Comparison of goodness-of-fit tests w.r.t. their runtime and their power.

(L1 IMQ, N-KSD IMQ, KSD IMQ), we set c = 1 and
β = −1/2. We show the results in Figure 1(d), us-
ing 100 repetitions to obtain the power. KSD with the
IMQ and with the Gaussian kernel performs best. Our
proposed Nyström-based method (m = 4

√
n) nearly

matches its performance with the IMQ kernel while re-
quiring only a fraction of the runtime. Besides Cauchy
RFF and Gauss RFF, all other approaches achieve less
power for σ ∈ {0.02, 0.04}.

These experiments demonstrate the efficiency of the
proposed Nyström-KSD method.

6 LIMITATIONS

Assumption 1, which underpins our main result (The-
orem 2), can be difficult to verify in some cases.
We refer to Example 2 for a case where the analyt-
ical verification is possible. The weaker assumption∥∥∥∥hp (·, X)∥Hhp

∥∥∥
ψ2

< ∞ of Theorem 3 is usually eas-

ier to verify analytically, as we show in Example 3. We
note that, as with all kernel-based tests, the choice
of the kernel, corresponding to the setting of γ for
the Gaussian kernel (resp. the setting of β, c for the
IMQ kernel), has an impact on the power of the test.
While optimizing kernel parameters is not the focus
of this work, there exist methods in the literature to
(approximately) achieve this goal (Jitkrittum et al.,
2016, 2017a,b; Liu et al., 2020; Schrab et al., 2022a,b;
Hagrass et al., 2024a,b, 2025).
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Nyström Kernel Stein Discrepancy:
Supplementary Materials

The supplementary material is structured as follows. We provide proofs for our main results in Appendix A and
our auxiliary results in Appendix B. Appendix C collects external statements that we use. Appendix D contains
our additional experiments.

A PROOFS

This section is dedicated to the proofs of our results in the main text. Lemma 1 is proved in Section A.1. We
prove our main result (Theorem 2) in Section A.2; Corollary 1 is shown in Section A.3. The proof of Theorem 3
is in Section A.4.

A.1 Proof of Lemma 1

By (4), KSD is the norm of the mean embedding of Q under hp (·, ·), that is,

Sp(Q) =

∥∥∥∥∫
Rd

hp (·,x) dQ(x)

∥∥∥∥
Hhp

=
∥∥µhp(Q)

∥∥
Hhp

. (12)

Hence, with Chatalic et al. (2022, (5)), the optimization problem (6) has the solution α = (αi)
m
i=1 =

1
nK

−
hp,m,m

Khp,m,n1n ∈ Rm. Now, using (12), we have∥∥∥∥∥
m∑
i=1

αihp (·, x̃i)
∥∥∥∥∥
2

Hhp,m

(a)
=

〈
m∑
i=1

αihp (·, x̃i) ,
m∑
i=1

αihp (·, x̃i)
〉

Hhp,m

(b)
=

m∑
i=1

m∑
j=1

αiαj ⟨hp (·, x̃i) , hp (·, x̃j)⟩Hhp,m

(c)
=

m∑
i=1

m∑
j=1

αiαjhp (x̃i, x̃j)
(d)
= αTKhp,m,mα

(e)
=

1

n2
1TnKhp,n,mK−

hp,m,m
Khp,m,mK−

hp,m,m︸ ︷︷ ︸
=K−

hp,m,m

Khp,m,n1n = βT
pK

−
hp,m,m

βp.

In (a) we used that ∥·∥Hhp,m
is inner product induced, (b) follows from the linearity of the inner product, (c) is

implied by the reproducing property, (d) is by the definition of the Gram matrix, in (e) we made use of the explicit
form of α, the symmetry of Gram matrices, the property KT

hp,m,n
= Khp,n,m, and that the Moore-Penrose inverse

satisfies A−AA− = A− for any matrix A.

A.2 Proof of Theorem 2

Contrasting the existing related work (Rudi et al., 2015; Chatalic et al., 2022; Sterge and Sriperumbudur, 2022;
Kalinke and Szabó, 2023), we do not impose a boundedness assumption on the feature map. This relaxation
leads to new technical difficulties that we resolve in the following. We start our analysis from a decomposition
similar to Chatalic et al. (2022, Lemma 4.1); the difference is that we introduce the centered covariance operator
CQ,h̄p,λ which allows us to handle both P = Q and the challenging case of P ̸= Q in a unified fashion.

To simplify notation, let µhp := µhp(Q), µ̂hp := µhp

(
Q̂n
)

, and µ̂Nys
hp

:= PHhp,m
µhp

(
Q̂n
)

. First, we decompose

the error as follows.
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∣∣∣Sp(Q) − S̃p

(
Q̂n
)∣∣∣ (a)=

∣∣∣∣∥∥µhp

∥∥
Hhp

−
∥∥∥µ̂Nys

hp

∥∥∥
Hhp

∣∣∣∣ (b)≤ ∥∥∥µhp − µ̂Nys
hp

∥∥∥
Hhp

(c)

≤
∥∥µhp − µ̂hp

∥∥
Hhp

+
∥∥∥µ̂hp − µ̂Nys

hp

∥∥∥
Hhp

(d)
=
∥∥µhp

− µ̂hp

∥∥
Hhp

+

∥∥∥∥∥(I − PHhp,m

)(
µ̂hp − 1

m

m∑
i=1

hp (·, x̃i)
)∥∥∥∥∥

Hhp

(e)

≤
∥∥µhp

− µ̂hp

∥∥
Hhp︸ ︷︷ ︸

=:t1

+
∥∥∥(I − PHhp,m

)
C

1/2

Q,h̄p,λ

∥∥∥
op︸ ︷︷ ︸

=:t2

∥∥∥∥∥C−1/2

Q,h̄p,λ

(
µ̂hp

− 1

m

m∑
i=1

hp (·, x̃i)
)∥∥∥∥∥

Hhp︸ ︷︷ ︸
=:t3

. (13)

(a) is implied by (12) and (7); (b) follows from the reverse triangle inequality; ±µ̂hp
and the triangle inequality

yield (c); in (d), we use the distributive property and introduce 1
m

∑m
i=1 hp (·, x̃i) ∈ Hhp,m whose projection onto

the orthogonal complement of Hhp,m is zero; in (e) I = C
1/2

Q,h̄p,λ
C

−1/2

Q,h̄p,λ
was introduced and we used the definition

of the operator norm.

We next obtain individual probabilistic bounds for the three terms t1, t2, and t3, which we subsequently combine
by union bound. We will then conclude the proof by showing that all assumptions that we imposed along the
way are satisfied.

• Term t1. The first term measures the deviation of an empirical mean µ̂hp to its population counterpart
µhp

. To bound this deviation
∥∥µ̂hp

− µhp

∥∥
Hhp

=
∥∥ 1
n

∑n
i=1 h̄p (·,xi)

∥∥
Hhp

, we will use the Bernstein inequality

(Theorem C.4) with the ηi := h̄p (·,xi) ∈ Hhp
(i ∈ [n]) centered random variables, by gaining control on the

moments of Y :=
∥∥h̄p (·, X)

∥∥
Hhp

. This is what we elaborate next.

By Assumption 1 and Lemma B.3, Y is sub-Gaussian; hence it is also sub-exponential (Lemma C.2(3)), and
therefore (Lemma B.2) it satisfies the Bernstein condition

E|Y |p ≤ 1

2
p!σ2Bp−2 <∞, with σ =

√
2 ∥Y ∥ψ1

, B = ∥Y ∥ψ1
,

for any p ≥ 2. Notice that B = ∥Y ∥ψ1

(a)

≲ ∥Y ∥ψ2

(b)

≲

√
tr
(
CQ,h̄p

)
. (a) follows from Lemma C.2(3) and (b) is

implied by Lemma B.3. As σ ≍ B, we also got that σ ≲

√
tr
(
CQ,h̄p

)
.

Having obtained a bound on the moments, we can apply Bernstein’s inequality for separable Hilbert spaces
(Yurinsky 1995; recalled in Theorem C.4) to the centered ηi = h̄p (·,xi) ∈ Hhp -s (i ∈ [n]), and obtain that for
any δ ∈ (0, 1) it holds that

Qn
( ∥∥µhp

− µ̂hp

∥∥
Hhp︸ ︷︷ ︸

(=∥ 1
n

∑n
i=1 ηi∥Hhp

)

≲

√
tr
(
CQ,h̄p

)
log(6/δ)

n
+

√√√√ tr
(
CQ,h̄p

)
log(6/δ)

n

)
≥ 1 − δ/3. (14)

Note that (14) also holds with the measure Qn ⊗ Λm, since the event considered in (14) has no randomness
w.r.t. Λm.

• Term t2. Assume that 0 < λ ≤
∥∥∥CQ,h̄p

∥∥∥
op

. Then, we can handle the second term with Lemma B.1 and

obtain that for any δ ∈ (0, 1) it holds that

(Qn ⊗ Λm)

(∥∥∥(I − PHhp,m

)
C

1/2

Q,h̄p,λ

∥∥∥
op

≲
√
λ

)
≥ 1 − δ/3 (15)

provided that m ≳ max

{
tr(CQ,h̄p)

λ , 1

}
log (12/δ).

• Term t3. The third term depends on the sample (xi)
n
i=1

i.i.d.∼ Q and on the Nyström selection (ij)
m
j=1

i.i.d.∼
Unif([n]) =: Λ; with this notation x̃j = xij (j ∈ [m]). Our goal is to take both sources of randomness into
account.
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Fixed xi-s, randomness in ij-s: Let the sample (xi)
n
i=1 be fixed. As the (xij )mj=1-s are i.i.d.,

t3 =

∥∥∥∥∥C−1/2

Q,h̄p,λ

(
µ̂hp − 1

m

m∑
i=1

hp (·, x̃i)
)∥∥∥∥∥

Hhp

=

∥∥∥∥∥ 1

m

m∑
i=1

[
C

−1/2

Q,h̄p,λ

(
hp (·, x̃i) − µ̂hp

)]
︸ ︷︷ ︸

=:Yi

∥∥∥∥∥
Hhp

measures the concentration of the sum 1
m

∑m
i=1 Yi around its expectation, which is zero as EJ [hp(·,xJ)] = µ̂hp

with J ∼ Λ. Notice that

max
i∈[m]

∥Yi∥Hhp
= max
i∈[m]

∥∥∥C−1/2

Q,h̄p,λ

(
hp (·, x̃i) − µ̂hp

)∥∥∥
Hhp

= max
i∈[m]

∥∥∥C−1/2

Q,h̄p,λ

(
hp (·, x̃i) − EX∼Qhp (·, X) + EX∼Qhp (·, X) − µ̂hp

)∥∥∥
Hhp

≤ max
i∈[m]

∥∥∥C−1/2

Q,h̄p,λ

(
hp (·, x̃i) − EX∼Qhp (·, X)︸ ︷︷ ︸

=h̄p(·,x̃i)

)∥∥∥
Hhp

+
∥∥∥C−1/2

Q,h̄p,λ

(
µ̂hp − EX∼Qhp (·, X)

)∥∥∥
Hhp

≤ max
i∈[n]

∥∥∥C−1/2

Q,h̄p,λ
h̄p (·,xi)

∥∥∥
Hhp

+
∥∥∥C−1/2

Q,h̄p,λ

(
µ̂hp

− EX∼Qhp (·, X)
)∥∥∥

Hhp

≤ max
i∈[n]

∥∥∥C−1/2

Q,h̄p,λ
h̄p (·,xi)

∥∥∥
Hhp

+
1

n

∑
i∈[n]

∥∥∥C−1/2

Q,h̄p,λ

(
hp (·,xi) − EX∼Qhp (·, X)︸ ︷︷ ︸

=h̄p(·,xi)

)∥∥∥
Hhp

≤ 2 max
i∈[n]

∥∥∥C−1/2

Q,h̄p,λ
h̄p (·,xi)

∥∥∥
Hhp

=: K = K(x1, . . . ,xn),

where we used that ±EX∼Qhp (·, X) = 0, the triangle inequality, and the homogeneity of the norm. An
application of Theorem C.5 yields that, conditioned on the sample (xi)

n
i=1, it holds that

Λm

(
(ij)

m
j=1 : t3 ≤ K

√
2 log(12/δ)√

m

∣∣∣∣∣ (xi)
n
i=1

)
≥ 1 − δ

6
. (16)

Randomness in xi-s: Let Zi :=
∥∥∥C−1/2

Q,h̄p,λ
h̄p (·,xi)

∥∥∥
Hhp

(i ∈ [n]) with (xi)
n
i=1

i.i.d.∼ Q. By Assumption 1 and

Lemma B.3, the Zi-s are sub-Gaussian random variables. Hence, by Lemma B.5, with probability at least
1 − δ/6, it holds that

K = 2 max
i∈[n]

|Zi| ≲
√

∥Z1∥2ψ2
log(12n/δ).

By Lemma B.3, ∥Z1∥2ψ2
≲ tr

(
C−1

Q,h̄p,λ
CQ,h̄p

)
. We have shown that

Qn
(

(xi)
n
i=1 : K ≲

√
tr
(
C−1

Q,h̄p,λ
CQ,h̄p

)
log(12n/δ)

)
≥ 1 − δ

6
. (17)

Combination: We now combine the intermediate results. Let

A =


(

(xi)
n
i=1 , (ij)

m
j=1

)
: t3 ≲

√
tr
(
C−1

Q,h̄p,λ
CQ,h̄p

)
log(12n/δ) log(12/δ)

√
m

 ,

B =

{
(xi)

n
i=1 : K ≲

√
tr
(
C−1

Q,h̄p,λ
CQ,h̄p

)
log(12n/δ)

}
,

C =

{(
(xi)

n
i=1 , (ij)

m
j=1

)
: t3 ≤ K

√
2 log(12/δ)√

m
, (xi)

n
i=1 ∈ B

}
⊆ A.
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Then, with Qn ⊗ Λm denoting the product measure of Qn and Λm, we obtain

(Qn ⊗ Λm)(A) = EQn [Λm (A | (xi)
n
i=1)] =

∫
(Rd)n

Λm(A | (xi)
n
i=1) dQn(x1, . . . ,xn)

≥
∫
B

Λm(A | (xi)
n
i=1) dQn(x1, . . . ,xn) ≥

∫
B

Λm(C | (xi)
n
i=1) dQn(x1, . . . ,xn)

(a)

≥
(

1 − δ

6

)
Qn(B)

(b)

≥ (1 − δ/6)2 = 1 − δ/3 + δ2/62 > 1 − δ/3. (18)

(a) is implied by the uniform lower bound established in (16). (b) was shown in (17).

Combination of t1, t2, and t3. To conclude, we use decomposition (13), and union bound (14), (15), and

(18). Further, we observe that tr
(
C−1

Q,h̄p,λ
CQ,h̄p

)
= NQ,h̄p

(λ), and obtain that

(Qn ⊗ Λm)

(∣∣∣Sp(Q) − S̃p

(
Q̂n
)∣∣∣ ≲

√
tr
(
CQ,h̄p

)
log(6/δ)

n
+

√√√√ tr
(
CQ,h̄p

)
log(6/δ)

n
+

+

√
λNQ,h̄p

(λ) log(12n/δ) log(12/δ)

m

)
≥ 1 − δ

provided that m ≳ max

{
tr(CQ,h̄p)

λ , 1

}
log(12/δ) and 0 < λ ≤

∥∥∥CQ,h̄p

∥∥∥
op

both hold. Now, spe-

cializing λ =
c tr(CQ,h̄p)

m for some absolute constant c > 1, all constraints are satisfied for m ≳

max

{
log(12/δ), tr

(
CQ,h̄p

)∥∥∥CQ,h̄p

∥∥∥−1

op

}
. Using our choice of λ, after rearranging, we get the stated claim.

A.3 Proof of Corollary 1

The proof is split into two parts. The first one considers the polynomial decay assumption, the second one is
about the exponential decay assumption.

• Polynomial decay. The
√
n-consistency of the first two addends in Theorem 2 was established in the

discussion following the statement. Hence, we limit our considerations to the last addend. Assume that
NQ,h̄p

(λ) ≲ λ−γ for γ ∈ (0, 1]. Observing that the trace expression is constant, the last addend in Theorem 2
yields that √√√√√ log(12/δ) log(12n/δ)NQ,hp

(
c tr(CQ,h̄p)

m

)
m2

(a)

≲

√
log(12/δ) log(12n/δ)

m2−γ
(b)
= O

(
1√
n

)
,

with (a) implied by the polynomial decay assumption and (b) follows from our choice of m ≳

n
1

2−γ log
1

2−γ (12n/δ) log
1

2−γ (12/δ). This derivation confirms the first stated result.

• Exponential decay. Assume it holds that NQ,h̄p
(λ) ≲ log(1 + c1/λ). Observe that as per the discussion

following Theorem 2, the first two addends are O
(
n−1/2

)
. For the last addend, again noticing that the trace

is constant, we have√√√√√ log(12/δ) log(12n/δ)NQ,h̄p

(
c tr(CQ,h̄p)

m

)
m2

(a)

≲

√√√√√ log(12/δ) log(12n/δ) log

(
1 + c1m

c tr(CQ,h̄p)

)
m2

(b)

≲

√√√√√ log(12/δ) log(12n/δ) log

(
1 + c1n

c tr(CQ,h̄p)

)
m2

(c)
= O

(
1√
n

)
,
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where (a) uses the exponential decay assumption. (b) uses that n ≥ m and that the logarithm is a monoton-

ically increasing function. (c) follows from our choice of m ≳
√
n

√
log

(
1 + c1n

c tr(CQ,h̄p)

)
log(12n/δ) log(12/δ),

finishing the proof of the corollary.

A.4 Proof of Theorem 3

By the reverse triangle inequality, we obtain∣∣∣Sp(Q) − Sp

(
Q̂n
)∣∣∣ ≤ ∥∥∥µhp

(Q) − µhp

(
Q̂n
)∥∥∥

HhP

=

∥∥∥∥∥ 1

n

n∑
i=1

[hp(·, Xi) − EX∼Qhp(·, X)]︸ ︷︷ ︸
=:ηi

∥∥∥∥∥
Hhp

,

which measures the concentration of i.i.d. centered random variables. To obtain the bound, we will use Bernstein’s
inequality (recalled in Theorem C.4) by gaining control on the moments of ∥ηi∥Hhp

with Lemma B.2.

First, note that the ∥ηi∥Hhp
-s (i ∈ [n]) are sub-Gaussian as

∥∥∥∥ηi∥Hhp

∥∥∥
ψ2

(a)
=
∥∥∥∥hp (·, Xi) − EX∼Qhp (·, X)∥Hhp

∥∥∥
ψ2

(b)

≤
∥∥∥∥hp (·, Xi)∥Hhp

+ ∥EX∼Qhp (·, X)∥Hhp

∥∥∥
ψ2

(c)

≤
∥∥∥∥hp (·, Xi)∥Hhp

+ EX∼Q ∥hp (·, X)∥Hhp

∥∥∥
ψ2

(d)

≲
∥∥∥∥hp (·, Xi)∥Hhp

∥∥∥
ψ2

<∞.

We use the definition of ηi in (a). (b) is implied by the triangle inequality and the monotonicity of the norm.
(c) is by Jensen’s inequality holding for Bochner integrals, and (d) follows from Lemma C.2(1); finiteness is due
to the imposed assumption.

Hence, ∥ηi∥Hhp
is sub-exponential (Lemma C.2(3)), and, by Lemma B.2, it holds for any p ≥ 2 that

EX∼Q ∥ηi∥pHhp
≤ 1

2
p!σ2Bp−2,

with σ,B ≲
∥∥∥∥ηi∥Hhp

∥∥∥
ψ1

=: K. Now, applying Theorem C.4 yields that, for any δ ∈ (0, 1), it holds with

probability at least 1 − δ that ∥∥∥∥∥ 1

n

n∑
i=1

ηi

∥∥∥∥∥
Hhp

≲
2K log(2/δ)

n
+

√
2K2 log(2/δ)

n
,

which is the stated claim.

B AUXILIARY RESULTS

This section collects our auxiliary results. Lemma B.1 builds on Rudi et al. (2015, Lemma 6), which assumes
bounded feature maps, and on Della Vecchia et al. (2021, Lemma 5), which is stated in the context of leverage
scores. The main technical challenge that we resolve lies in introducing and handling the centered covariance
operator that allows us to make use of existing concentration results. Lemma B.2 states that a sub-exponential
random variable satisfies Bernstein’s conditions, and Lemma B.3 is about the sub-Gaussianity of norms of Hilbert
space-valued random variables. In Lemma B.4, we show how tensor products interplay with linearly transformed
vectors. Lemma B.5 is about the maximum of real-valued sub-Gaussian random variables; it is a slightly altered
restatement of Canonne (2021). In Lemma B.6 and Lemma B.7, we collect inequalities of positive operators and
of norms of covariance operators, respectively.

Lemma B.1 (Projected covariance operator bound). Let Assumption 1 hold, and assume 0 < λ ≤
∥∥∥CQ,h̄p

∥∥∥
op
.

Then, for any δ ∈ (0, 1), it holds that

(Pn ⊗ Λm)

(∥∥∥(I − PHhp,m

)
C

1/2

Q,h̄p,λ

∥∥∥2
op

≲ λ

)
≥ 1 − δ,
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provided that m ≳ max

{
tr(CQ,h̄p)

λ , 1

}
log (4/δ).

Proof. The proof proceeds in two steps: First, we show that
∥∥∥(I − PHhp,m

)
C

1/2

Q,h̄p,λ

∥∥∥2
op

≤ λ
1−β(λ) , when β(λ) :=

λmax

(
C

−1/2

Q,h̄p,λ

(
CQ,h̄p

− CQ̃m,h̃p

)
C

−1/2

Q,h̄p,λ

)
< 1, where

h̃p(·,x) := hp (·,x) − 1

m

∑
i∈[m]

hp (·, x̃i) (x ∈ Rd),

CQ̃m,h̃p
=

1

m

∑
i∈[m]

h̃p (·, x̃i) ⊗ h̃p (·, x̃i)

=
1

m

∑
i∈[m]

hp (·, x̃i) ⊗ hp (·, x̃i) −

 1

m

∑
i∈[m]

hp (·, x̃i)

⊗

 1

m

∑
i∈[m]

hp (·, x̃i)

 .

In the second step, we show that β(λ) < 1 (with high probability) for m large enough.

Step 1. Define the sampling operator Zm : Hhp
→ Rm by f 7→ 1√

m
(f(x̃i))

m
i=1. Its adjoint Z∗

m : Rm → Hhp

(see Sterge and Sriperumbudur (2022, Lemma A.7(i)) is given by α = (αi)
m
i=1 7→ 1√

m

∑m
i=1 αihp (·, x̃i). Recall

that Hhp,m = span {hp (·, x̃i) | i ∈ [m]} and notice that rangePHhp,m
= rangeZ∗

m. We obtain∥∥∥(I − PHhp,m

)
C

1/2

Q,h̄p,λ

∥∥∥2
op

(a)

≤ λ
∥∥∥(Z∗

mZm + λI)
−1/2

C
1/2

Q,h̄p,λ

∥∥∥2
op

(b)
= λ

∥∥∥C−1/2

Q̃m,hp,λ
C

1/2

Q,h̄p,λ

∥∥∥2
op

(19)

(c)

≤ λ
∥∥∥C−1/2

Q̃m,h̃p,λ
C

1/2

Q,h̄p,λ

∥∥∥2
op

where (a) follows from Rudi et al. (2015, Proposition 3) with X := C
1/2

Q,h̄p,λ
therein. (b) is by Sterge and

Sriperumbudur (2022, Lemma A.7(iv)). Lemma B.6(5) with C := C
−1/2

Q̃m,hp,λ
, D := C

−1/2

Q̃m,h̃p,λ
, and X := C

1/2

Q,h̄p,λ

yields (c), as we obtain C∗C = C−1

Q̃m,hp,λ
≼ C−1

Q̃m,h̃p,λ
= D∗D; the positive definite relationship holding by the

following chain of inequalities

C−1

Q̃m,hp,λ
≼ C−1

Q̃m,h̃p,λ

Lemma B.6(4)⇐⇒ CQ̃m,hp,λ
≽ CQ̃m,h̃p,λ

(d)⇐⇒ CQ̃m,hp
≽ CQ̃m,h̃p

(e)⇐⇒ 0 ≼ µhp

(
Q̃m
)
⊗ µhp

(
Q̃m
)
,

which is true as the r.h.s. is a positive operator. In (d), we subtract λI from both sides. (e) follows from
subtracting CQ̃m,hp

and by multiplying with −1.

Applying the second inequality in the statement of Rudi et al. (2015, Proposition 7) to (19) (we specialize
A := CQ̃m,h̃p

and B := CQ,h̄p
therein), we obtain

λ
∥∥∥C−1/2

Q̃m,h̃p,λ
C

1/2

Q,h̄p,λ

∥∥∥2
op

≤ λ

1 − β(λ)
, (20)

when β(λ) < 1. The combination of (19) and (20) yields the first stated claim.

Step 2. It remains to show that β(λ) < 1 holds with high probability. Let us introduce the shorthands

µ̃hp = µhp

(
Q̃m
)

= 1
m

∑
i∈[m] hp (·, x̃i) and µhp = µhp(Q). Notice that we have

CQ̃m,h̃p
= CQ̃m,h̄p

−
[
µ̃hp − µhp

]
⊗
[
µ̃hp − µhp

]
, (21)

which is verified by using the linearity of tensor products and by using that CQ̃m,h̄p
= 1

m

∑
i∈[m] h̄p (·, x̃i) ⊗

h̄p (·, x̃i).
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Instead of showing that β(λ) < 1, we will show that the following stronger requirement can be satisfied:

β(λ)
(a)

≤
∥∥∥C−1/2

Q,h̄p,λ

(
CQ,h̄p

− CQ̃m,h̃p

)
C

−1/2

Q,h̄p,λ

∥∥∥
op

(b)
=
∥∥∥C−1/2

Q,h̄p,λ

(
CQ,h̄p

− CQ̃m,h̄p
+
[
µ̃hp

− µhp

]
⊗
[
µ̃hp

− µhp

])
C

−1/2

Q,h̄p,λ

∥∥∥
op

(c)

≤
∥∥∥C−1/2

Q,h̄p,λ

(
CQ,h̄p

− CQ̃m,h̄p

)
C

−1/2

Q,h̄p,λ

∥∥∥
op

+

+
∥∥∥C−1/2

Q,h̄p,λ

([
µ̃hp

− µhp

]
⊗
[
µ̃hp

− µhp

])
C

−1/2

Q,h̄p,λ

∥∥∥
op

(d)
=
∥∥∥C−1/2

Q,h̄p,λ

(
CQ,h̄p

− CQ̃m,h̄p

)
C

−1/2

Q,h̄p,λ

∥∥∥
op︸ ︷︷ ︸

=:T1

+
∥∥∥C−1/2

Q,h̄p,λ

(
µ̃hp

− µhp

)∥∥∥2
Hhp︸ ︷︷ ︸

=:T2

< 1.

In (a), we use that the spectral radius is bounded by the operator norm. (b) uses (21) and (c) holds by the
triangle inequality. Lemma B.4 and Lemma C.1 applied to the second term yield (d).

• First term (T1). We will bring ourselves into the setting of Koltchinskii and Lounici (2017, Theorem 9)
(recalled in Theorem C.3). First, we condition on the Nyström selection and define the centered random

variables ηij = C
−1/2

Q,h̄p,λ
(hp (·, x̃j) − EX∼Qhp (·, X)) (= C

−1/2

Q,h̄p,λ
h̄p(·, x̃j)) (j ∈ [m]), which satisfy the sub-

Gaussian assumption. Indeed, let u ∈ Hhp
be arbitrary, and v = C

−1/2

Q,h̄p,λ
u ∈ Hhp

; the invertibility of CQ,h̄p,λ

guarantees the well-definedness of v. With this notation, for any j ∈ [m],∥∥∥〈ηij , u〉Hhp

∥∥∥
ψ2

(a)
=

∥∥∥∥〈C−1/2

Q,h̄p,λ
h̄p(·, x̃j), u

〉
Hhp

∥∥∥∥
ψ2

(b)
=

∥∥∥∥〈h̄p(·, x̃j), C−1/2

Q,h̄p,λ
u
〉
Hhp

∥∥∥∥
ψ2

(c)
=
∥∥∥〈h̄p(·, x̃j), v〉Hhp

∥∥∥
ψ2

(d)

≲
∥∥∥〈h̄p(·, x̃j), v〉Hhp

∥∥∥
L2(Q)︸ ︷︷ ︸

(†)

(e)
=

∥∥∥∥〈h̄p(·, x̃j), C−1/2

Q,h̄p,λ
u
〉
Hhp

∥∥∥∥
L2(Q)

(f)
=

∥∥∥∥〈C−1/2

Q,h̄p,λ
h̄p(·, x̃ij ), u

〉
Hhp

∥∥∥∥
L2(Q)

(g)
=
∥∥∥〈ηij , u〉Hhp

∥∥∥
L2(Q)

<∞.

(a) is the definition of the ηij -s, (b) uses the self-adjointness of CQ,h̄p,λ, and (c) follows from the definition
of v. The sub-Gaussian assumption implies (d), (e) again follows from the definition of v, and (f) is implied
by the self-adjointness of CQ,h̄p,λ. Inserting the definition of ηij in (g) proves their sub-Gaussianity by using
that (†) <∞ according to Assumption 1 and as the derivation afterwards only involved equalities.

Let A = C
−1/2

Q,h̄p,λ
CQ,h̄p

C
−1/2

Q,h̄p,λ
. Theorem C.3 yields that, conditioned on the Nyström selection, it holds with

probability at least 1 − δ/2 that∥∥∥C−1/2

Q,h̄p,λ

(
CQ,h̄p

− CQ̃m,h̄p

)
C

−1/2

Q,h̄p,λ︸ ︷︷ ︸
= 1

m

∑m
j=1 ηij⊗ηij−E[ηij⊗ηij ]

∥∥∥
op

≲ ∥A∥op max

(√
r (A)

m
,

√
log(2/δ)

m

)
,

provided that m ≥ max {r (A) , log(2/δ)}, with r (A) = tr(A)
∥A∥op

. Using Lemma B.6(2), A ≼ I, hence ∥A∥op ≤ 1.

Moreover by Lemma B.7(3), r(A) ≤ 2 tr(CQ,h̄p)
λ , which implies that, with the same probability,

∥∥∥C−1/2

Q,h̄p,λ

(
CQ,h̄p

− CQ̃m,h̄p

)
C

−1/2

Q,h̄p,λ

∥∥∥
op

≲ max


√√√√ tr

(
CQ,h̄p

)
λm

,

√
log(2/δ)

m

 ,

holds when m ≥ max

{
2 tr(CQ,h̄p)

λ , log(2/δ)

}
. Therefore, one can take m ≳ max

{
tr(CQ,h̄p)

λ , log(2/δ)

}
to get∥∥∥C−1/2

Q,h̄p,λ

(
CQ,h̄p

− CQ̃m,h̄p

)
C

−1/2

Q,h̄p,λ

∥∥∥
op
< 1

2 holding with probability at least 1 − δ/2.
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• Second term (T2). We condition again on the Nyström selection, let ηij = C
−1/2

Q,h̄p,λ
h̄p
(
·,xij

)
for j ∈ [m],

and observe that 1
m

∑
j∈[m] ηij = C

−1/2

Q,h̄p,λ

(
µ̃hp

− µhp

)
. The ηij -s are centered, and, by Lemma B.3, it holds

for any j ∈ [m] that ∥∥∥∥∥ηij∥∥Hhp

∥∥∥2
ψ2

≲ tr
(
C−1

Q,h̄p,λ
CQ,h̄p

)
,

that is, the
∥∥ηij∥∥Hhp

-s are sub-Gaussian. Hence, by Lemma C.2(3), they are sub-exponential, and, by

Lemma B.2, they satisfy the Bernstein condition with σ,B ≲

√
tr
(
C−1

Q,h̄p,λ
CQ,h̄p

)
. Therefore, application of

Theorem C.4 yields that, conditioned on the Nyström choice, it holds with probability at least 1 − δ/2 that

∥∥∥∥∥∥ 1

m

m∑
j=1

ηij

∥∥∥∥∥∥
Hhp

≲

√
tr
(
C−1

Q,h̄p,λ
CQ,h̄p

)
log(4/δ)

m
+

√√√√ tr
(
C−1

Q,h̄p,λ
CQ,h̄p

)
log(4/δ)

m

(a)

≲

√√√√ tr
(
C−1

Q,h̄p,λ
CQ,h̄p

)
log(4/δ)

m

(b)

≤

√√√√ tr
(
CQ,h̄p

)
log(4/δ)

λm

where in (a), we assume that m ≥ log(4/δ) and notice that this condition implies that the first term is
smaller than the second term. Lemma B.7(1) yields (b). The obtained bound means that choosing m ≳

max

{
tr(CQ,h̄p)

λ , 1

}
log(4/δ) guarantees that

∥∥∥ 1
m

∑m
j=1 ηij

∥∥∥2
Hhp

< 1
2 holds with probability at least 1 − δ/2.

As a final step, we observe that log(2/δ) < log(4/δ) and log(4/δ) > 1, which, by union bound, shows that, for

m ≳ max

{
tr(CQ,h̄p)

λ , 1

}
log(4/δ), it holds with probability at least 1 − δ that β(λ) < 1. We lift the conditioning

by integrating over all Nyström selections.

Lemma B.2 (Sub-exponential satisfies Bernstein conditions). Let Y be a real-valued random variable which is
sub-exponential, i.e. ∥Y ∥ψ1

<∞. Let σ :=
√

2 ∥Y ∥ψ1
, B := ∥Y ∥ψ1

> 0. Then the Bernstein condition

E|Y |p ≤ 1

2
p!σ2Bp−2 <∞

holds for any p ≥ 2.

Proof. For any p ≥ 2, we have

E|Y |p = p!BpE
|Y |p
Bpp!

(a)
< p!Bp

[
E exp

( |Y |
B

)
− 1

]
︸ ︷︷ ︸

(b)

≤1

=
1

2
p!Bp−2

(√
2B
)2
,

where in (a) we use that xn

n! < ex − 1 holds for all n, x > 0, and (b) follows from the definition of the sub-
exponential Orlicz norm.

The next lemma shows that h̄p (·, X) and the “whitened” random variable C
−1/2

Q,h̄p,λ
h̄p (·, X) enjoy sub-Gaussian

properties in terms of their respective Hhp
norms.

Lemma B.3 (Sub-Gaussianity of norm of Hilbert space-valued random variables). Let H be a separable Hilbert
space, Y ∼ Q ∈ M+

1 (H), and A ∈ L(H) invertible, and positive. Assume that Y is sub-Gaussian, in other words
∥⟨Y, u⟩H∥

ψ2
≲ ∥⟨Y, u⟩H∥

L2(Q)
holds for all u ∈ H. Then∥∥∥∥∥∥A1/2Y

∥∥∥
H

∥∥∥2
ψ2

≲ tr (AEY∼Q (Y ⊗ Y )) .
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Specifically, with Assumption 1, choosing A := I and Y := h̄p (·, X), and A := C−1
Q,h̄p,λ

(λ > 0) and Y := h̄p (·, X),

respectively, it holds that∥∥∥∥∥h̄p (·, X)
∥∥
Hhp

∥∥∥
ψ2

<∞, and

∥∥∥∥∥∥∥C−1/2

Q,h̄p,λ
h̄p (·, X)

∥∥∥
Hhp

∥∥∥∥2
ψ2

≲ tr
(
C−1

Q,h̄p,λ
CQ,h̄p

)
<∞,

that is, both
∥∥h̄p (·, X)

∥∥
Hhp

and
∥∥∥C−1/2

Q,h̄p,λ
h̄p (·, X)

∥∥∥
Hhp

are sub-Gaussian.

Proof. Let (ei)i∈I be a countable ONB of the separable H. We obtain

∥∥∥∥∥∥A1/2Y
∥∥∥
H

∥∥∥2
ψ2

(a)
=

∥∥∥∥∥∥∥A1/2Y
∥∥∥2
H

∥∥∥∥
ψ1

(b)
=

∥∥∥∥∥∑
i∈I

〈
A1/2Y, ei

〉2
H

∥∥∥∥∥
ψ1

(c)

≤
∑
i∈I

∥∥∥∥〈A1/2Y, ei

〉2
H

∥∥∥∥
ψ1

(d)
=
∑
i∈I

∥∥∥〈A1/2Y, ei

〉
H

∥∥∥2
ψ2

(e)

≲
∑
i∈I

∥∥∥〈A1/2Y, ei

〉
H

∥∥∥2
L2(Q)

(f)
=
∑
i∈I

EY∼Q

〈
A1/2Y, ei

〉2
H

(g)
=
∑
i∈I

EY∼Q

〈(
A1/2Y

)
⊗
(
A1/2Y

)
, ei ⊗ ei

〉
H⊗H

(h)
=
∑
i∈I

EY∼Q

〈
A1/2 (Y ⊗ Y )A1/2, ei ⊗ ei

〉
H⊗H

(i)
=
∑
i∈I

〈
A1/2EY∼Q (Y ⊗ Y )A1/2, ei ⊗ ei

〉
H⊗H

(j)
=
∑
i∈I

〈
A1/2EY∼Q (Y ⊗ Y )A1/2ei, ei

〉
H

(k)
= tr

(
A1/2EY∼Q (Y ⊗ Y )A1/2

)
(l)
= tr (AEY∼Q (Y ⊗ Y )) .

The details are as follows. (a) uses Lemma C.2(4), Parseval’s identity yields (b), and the triangle inequality
implies (c). (d) holds by Lemma C.2(4). For (e), let ui = A1/2ei and observe that∥∥∥〈A1/2Y, ei

〉
H

∥∥∥2
ψ2

(m)
= ∥⟨Y, ui⟩H∥2

ψ2

(n)

≲ ∥⟨Y, ui⟩H∥2
L2(Q)

(o)
=
∥∥∥〈A1/2Y, ei

〉
H

∥∥∥2
L2(Q)

,

where (m) uses the self-adjointness of A1/2 (implied by the positivity of A), (n) follows from the sub-Gaussian
assumption on Y holding for arbitrary ui ∈ H, and (o), again, uses the self-adjointness of A. (f) is the definition
of the L2(Q)-norm, (g) holds by the definition of the tensor product, and Lemma B.4 yields (h). (i) integral
and bounded linear operators are swapped by Steinwart and Christmann (2008, (A.32)), (j) is a property of
Hilbert-Schmidt operators, and (k) uses the definition of the trace of a linear operator w.r.t. an ONB. The cyclic
invariance property of the trace yields (l) and concludes the proof of the first statement.

With A := I and Y := h̄p (·, X), we obtain
∥∥∥∥∥h̄p (·, X)

∥∥
Hhp

∥∥∥
ψ2

≲ tr
(
E
(
h̄p (·, X) ⊗ h̄p (·, X)

))
= tr(CQ,h̄p

) <∞,

which is the second statement. The last part follows from considering A := C−1
Q,h̄p,λ

and Y := h̄p (·, X); the

invertibility of CQ,h̄p,λ guarantees the well-definedness of the ui-s (i ∈ I).

The following lemma is a natural generalization of the property (Ca)(Db)T = C
(
abT

)
DT, where C,D ∈ Rd×d

and a,b ∈ Rd.
Lemma B.4 (Tensor product of linearly transformed vectors). Let H be a Hilbert space and C,D ∈ L(H). Then
for any a, b ∈ H, (Ca) ⊗ (Db) = C(a ⊗ b)D∗. Specifically, when D is self-adjoint, it holds that (Ca) ⊗ (Db) =
C(a⊗ b)D.

Proof. Let h ∈ H be arbitrary and fixed. Then,

[(Ca) ⊗ (Db)](h)
(a)
= Ca⟨Db, h⟩H,

[C(a⊗ b)D∗](h) = C(a⊗ b)(D∗h)
(b)
= Ca⟨b,D∗h⟩H

(c)
= Ca⟨Db, h⟩H.
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In (a) and (b), we used the definition of ⊗, (c) follows from the definition of the adjoint and by the property
(D∗)∗ = D. The shown equality of [(Ca) ⊗ (Db)](h) = [C(a ⊗ b)D∗](h) for any h ∈ H proves the claimed
statement.

Lemma B.5 (Maximum of sub-Gaussian random variables). Let (Xi)
n
i=1

i.i.d.∼ P be real-valued sub-Gaussian

random variables. Then P
(

maxi∈[n] |Xi| ≲
√

∥X1∥2ψ2
log(2n/δ)

)
≥ 1 − δ holds for any δ ∈ (0, 1).

Proof. Let c > 0 be an absolute constant. As X1 is sub-Gaussian, by Vershynin (2018, Proposition 2.5.2), there

exists K1 ≤ c ∥X1∥ψ2
such that P(|X1| ≥ t) ≤ 2e

− t2

K2
1 for all t ≥ 0. Let u =

√
K2

1 (log(2n) + t). Then

P
(

max
i∈[n]

|Xi| ≥ u

)
(a)

≤
n∑
i=1

P (|Xi| ≥ u)
(b)

≤ 2ne
− u2

K2
1

(c)
= e−t,

where (a) uses that the probability of a maximum exceeding a value is less than the sum of the probability
of its arguments exceeding the value, (b) uses the mentioned property of sub-Gaussian random variables, and
(c) is our definition of u. Solving for δ := e−t gives t = log(1/δ), and considering the complement yields

P
(

maxi∈[n] |Xi| ≤
√
K2

1 log(2n/δ)
)
≥ 1 − δ. Using that K1 ≤ c ∥X1∥ψ2

concludes the proof.

The following result shows that positive operators share some well-known properties of positive (semi-)definite
matrices; we refer to Bhatia (2007) for the related matrix cases.

Lemma B.6 (Properties of positive operators). Let H be a Hilbert space and assume A,B ∈ L (H) are positive
and invertible. Then, the following hold.

1. If A ≼ B, then X∗AX ≼ X∗BX for any X ∈ L (H).

2. If A ≼ B, then B−1/2AB−1/2 ≼ I.

3. If B ≼ I, then B−1 ≽ I.

4. If A ≼ B, then A−1 ≽ B−1.

5. If C∗C ≼ D∗D, then ∥CX∥op ≤ ∥DX∥op for any C,D,X ∈ L (H).

Proof.

1. For any x ∈ H, it holds that ⟨x,X∗AXx⟩H = ⟨Xx,AXx⟩H
(†)
≤ ⟨Xx,BXx⟩H = ⟨x,X∗BXx⟩H; (†) follows

from A ≼ B applied to Xx.

2. We apply (1.) with X = B−1/2.

3. We have B−1 = B−1/2IB−1/2 ≽ B−1/2BB−1/2 = I, where we used (1.) in the second step.

4. By (2.), it holds that B−1/2AB−1/2 ≼ I, from which (3.) implies that B1/2A−1B1/2 ≽ I. Now apply (1.)
with X = B−1/2 to obtain the stated result.

5. The C∗-property, the definition of the adjoint and that of the operator norm yield

∥CX∥2op = ∥X∗C∗CX∥op = sup
∥x∥H=1

⟨x,X∗C∗CXx⟩H = sup
∥x∥H=1

⟨Xx,C∗CXx⟩H

≤ sup
∥x∥H=1

⟨Xx,D∗DXx⟩H = sup
∥x∥H=1

⟨x,X∗D∗DXx⟩H = ∥X∗D∗DX∥op = ∥DX∥2op ,

which, after taking the positive square root, proves the claim.

The following lemma collects some inequalities for the trace and operator norms of covariance operators. Many
of these are known and frequently employed without proof; we provide proofs here for completeness.

Lemma B.7 (Covariance operator inequalities). Let H be a separable Hilbert space, X ∼ Q ∈ M+
1 (H), CQ =

E [X ⊗X], CQ,λ = CQ+λI, and let r(·) = tr(·)
∥·∥op

be defined on trace-class operators. Assume that 0 < λ ≤ ∥CQ∥op.
Then, the following hold.
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1. 1
2r (CQ) ≤ tr

(
C−1

Q,λCQ

)
≤ tr(CQ)

λ ,

2. 1
2 ≤

∥∥∥C−1/2
Q,λ CQC

−1/2
Q,λ

∥∥∥
op
< 1, and

3. r
(
C

−1/2
Q,λ CQC

−1/2
Q,λ

)
≤ 2 tr(CQ)

λ .

Proof. Let (λi)i∈I denote the eigenvalues of CQ, with λ1 ≥ λ2 ≥ · · · ≥ 0.

1. The first inequality follows from tr
(
C−1

Q,λCQ

)
=
∑
i∈I

λi

λi+λ
≥ ∑

i∈I
λi

2∥CQ∥op
= tr(CQ)

2∥CQ∥op
. The second one is

footnote 3.

2. For the first inequality, observe that
∥∥∥C−1/2

Q,λ CQC
−1/2
Q,λ

∥∥∥
op

= λ1

λ1+λ

(†)
≥ 1

2 , where (†) ⇔ 2λ1 ≥ λ1 + λ ⇔

(∥CQ∥op =)λ1 ≥ λ, which holds by assumption. The second one is implied as λ1

λ1+λ

(†)
< 1, where (†) ⇔ λ1 <

λ1 + λ⇔ 0 < λ; this condition was again assumed.

3. We upper bound the numerator of r(C
−1/2
Q,λ CQC

−1/2
Q,λ ) by (1.) after rewriting it as tr

(
C

−1/2
Q,λ CQC

−1/2
Q,λ

)
=

tr
(
C−1

Q,λCQ

)
using the cyclic invariance of the trace, and lower bound the denominator by (2.).

C EXTERNAL STATEMENTS

This section collects the external statements that we use. Lemma C.1 gives equivalent norms for f⊗f . We collect
properties of Orlicz norms in Lemma C.2. Theorem C.3 is about the concentration of the empirical covariance,
and Theorem C.4 recalls Bernstein’s inequality for separable Hilbert spaces. Theorem C.5 is a concentration
result for bounded random variables in a separable Hilbert space.

Lemma C.1 (Lemma B.8; Sriperumbudur and Sterge 2022). Define B = f ⊗ f , where f ∈ H and H is a

separable Hilbert space. Then ∥B∥op = ∥B∥H⊗H = trB = ∥f∥2H.

We refer to the following sources for the items in Lemma C.2. Item 1 is Vershynin (2018, Lemma 2.6.8), Item
2 is Vershynin (2018, Exercise 2.7.10), Item 3 recalls van der Vaart and Wellner (1996, p. 95), and Item 4 is
Vershynin (2018, Lemma 2.7.6).

Lemma C.2 (Collection of Orlicz properties). Let X be a real-valued random variable.

1. If X is sub-Gaussian, then X − EX is also sub-Gaussian, and

∥X − EX∥ψ2
≤ ∥X∥ψ2

+ ∥EX∥ψ2
≲ ∥X∥ψ2

.

2. If X is sub-exponential, then X − EX is also sub-exponential, and satisfies

∥X − EX∥ψ1
≤ ∥X∥ψ1

+ ∥EX∥ψ1
≲ ∥X∥ψ1

.

3. If X is sub-Gaussian, it is sub-exponential. Specifically, it holds that ∥X∥ψ1
≤ √

log 2 ∥X∥ψ2
.

4. X is sub-Gaussian if and only if X2 is sub-exponential. Moreover,∥∥X2
∥∥
ψ1

= ∥X∥2ψ2
.

Theorem C.3 (Theorem 9; Koltchinskii and Lounici 2017). Let X,X1, . . . , Xn be i.i.d. square integrable centered
random vectors in a Hilbert space H with covariance operator C. Let the empirical covariance operator be
Ĉn = 1

n

∑n
i=1Xi⊗Xi. If X is sub-Gaussian, then there exists a constant c > 0 such that, for all δ ∈ (0, 1), with

probability at least 1 − δ,

∥∥∥Ĉn − C
∥∥∥
op

≤ c ∥C∥op max

(√
r(C)

n
,

√
log(1/δ)

n

)
,

provided that n ≥ max{r(C), log(1/δ)}, where r(C) := tr(C)
∥C∥op

.
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The following theorem by Yurinsky (1995) is quoted from Sriperumbudur and Sterge (2022).

Theorem C.4 (Bernstein bound for separable Hilbert spaces; Theorem 3.3.4; Yurinsky 1995). Let (Ω,A,P) be
a probability space, H a separable Hilbert space, B > 0, σ > 0, and η1, . . . , ηn : Ω → H centered i.i.d. random
variables that satisfy

E ∥η1∥pH ≤ 1

2
p!σ2Bp−2

for all p ≥ 2. Then, for any δ ∈ (0, 1) it holds with probability at least 1 − δ that∥∥∥∥∥ 1

n

n∑
i=1

ηi

∥∥∥∥∥
H

≤ 2B log(2/δ)

n
+

√
2σ2 log(2/δ)

n
.

Theorem C.5 (Concentration in separable Hilbert spaces; Lemma E.1; Chatalic et al. 2022). Let X1, . . . , Xn

be i.i.d. random variables with zero mean in a separable Hilbert space (H, ∥·∥H) such that maxi∈[n] ∥Xi∥H ≤ b
almost surely, for some b > 0. Then for any δ ∈ (0, 1), it holds with probability at least 1 − δ that∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
H

≤ b

√
2 log(2/δ)√

n
.

D ADDITIONAL EXPERIMENTS

In this section, we collect additional numerical results. Section D.1 discusses the trade-off between power and
runtime of the tested approaches. Section D.2 shows the impact of the size of the Nyström sample.

D.1 Runtime vs. Power

Based on the experimental setup in Section 5, we performed an additional set of experiments to contrast runtime
and power. We repeated each setup for 100 rounds to obtain the given power and average runtime. The
quadratic-time approaches are considered as baseline.
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Figure 2: Runtime and power trade-off of the tested approximations.

Laplace vs. standard normal. We fix d = 15, m = 4
√
n, and vary n ∈ {500, 1000, 2000}. The remaining

parameters match the ones stated in Section 5.
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Figure 2(a) summarizes our results regarding power and runtime. The results show that the proposed IMQ
N-KSD approach has the highest power of all approximations across all tested n. Second best is L1 IMQ. W.r.t.
runtime, the proposed method is faster than L1 IMQ for n ∈ {500, 1000}. For n = 2000, IMQ N-KSD has a
similar runtime but still features better power. The FSSD approaches are the fastest but do not have a high
power in this experiment.

Student-t vs. standard normal. Again, we fix d = 15, set m = 4
√
n, and vary n ∈ {500, 1000, 2000}. The

other parameters are the sames as the ones stated in Section 5.

Figure 2(b) shows that L1 IMQ achieves higher power than the proposed IMQ N-KSD for n ∈ {500, 1000} but
at the price of a larger runtime. For n = 2000, the performance of IMQ N-KSD is slightly better than that of L1
IMQ while both approaches have a similar runtime. The remaining approaches perform worse in terms of power.

Restricted Boltzmann machine (RBM). For the RBM experiment, we set σ = 0.02, m = 4
√
n, and select

n ∈ {500, 1000, 2000}; all other parameters match the ones detailed in Section 5.

We summarize the results in Figure 2(c). While both random feature Stein discrepancies (L1 IMQ, L2 SechExp)
scale linearly in n, the higher dimensionality and difficulty of this problem result in a runtime that is orders
of magnitude larger than that of all other approximations; the same observation w.r.t. runtime applies to the
RFF approaches. We also observe that the runtimes of the related FSSD approaches increase compared to their
runtime results in the Laplace and Student-t experiments.

Regarding power, the proposed Gauss N-KSD achieves the best result of all approximations from n ≥ 1000 while
being among the fastest methods. While, for n ∈ {1000, 2000}, it is a bit slower than the FSSD approaches, the
proposed method achieves higher power across all choices of n.

Summary. Figure 2(a)–(b) shows that some existing methods, e.g., L1 IMQ, perform similarly to N-KSD in
terms of power achieved but come with a larger runtime for smaller sample sizes. Figure 2(c) highlights that
some competitors (L1 IMQ, L2 SechExp, Cauchy RFF, Gauss RFF) require a larger runtime than the baseline
approaches (IMQ KSD, Gauss KSD) for samples of size less than 2000. Here, our method is one to two orders
of magnitude faster while achieving the same or, in some cases, larger power.

These results show that the proposed N-KSD has a very good runtime/power trade-off.

D.2 Impact of the Size of the Nyström Sample

Figure 3(a–d) captures the impact of the choice of Nyström samples m = c
√
n for c ∈ {1, 4, 8}; the

√
n dependence

follows from Corollary 1(ii), where we neglect the logarithmic terms due to their small contribution. We include
the quadratic time approaches as baselines; the experimental setup matches the experiments detailed in the
article in Section 5. Generally, as one expects, both runtime and power increase for larger c. Still, even for c = 8,
where the power of the proposed approximation is hardly discernible from the baselines across all experiments,
its runtime is an order of magnitude lower, which further strengthens the benefit of employing our proposed
method.
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Figure 3: Impact of different choices of factor c for the number of Nyström samples m = c
√
n.
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