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Quick Summary

e Hilbert-Schmidt independence criterion (HSIC [1, 3, 2, 4]; aka.
distance covariance): popular dependency measure.

e Applications: feature selection, causal discovery, independence
testing, clustering, . ...

e Many known estimators converge at a rate of Op (n_l/ 2).

e Contribution: For a large class of distributions and kernels on R?
faster rates are impossible.

HSIC

o Given X = (Xm)%zl ~Pon X = X%:le, Xm 1s equipped with
kernel kp, and feature map ¢y, = Xy, — Hy, , HSIC takes the form

HSICK(P) = [}11(B) — s (@B |,

with ®%:1Pm the product of the marginal distributions Py,, m € [M| :=
{L.... M}, and p(P) = Ex p|op(X)].
e Weset X = RY X, = R¥m d ="M g, that is, RY = xM_ Rdm,

2
Alx-ylPg,,

ko= Mk,

e Gaussian kernels: Kk (x,y) =e

e Translation-invariant kernels: There exist ¥y, : R%m — R such that
km(X,y) = ¥m(x — y) (contains Gaussian kernels).

Our Goal: Lower Bound

o F, == any estimator of HSIC.(PP) based on n i.i.d. samples from P.

o A positive sequence (&,)0°

there exists ¢ > 0 such that

is a lower bound of HSIC estimation if

worst distribution

inf sy P" {|HSICk(IP) _ By > cgn} >0 Vn.
F, PeP
N~

best estimator

e An estimator with a matching upper bound is called minimax-optimal.

e — We want &, =< n=1/2.
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Tool: Le Cam’s Method

o Key |7]: There exists o > 0 and a positive sequence (sy)-2 ; such that

for any fixed n, there exists an adversarial pair (P@O, Pgl) e P xPst.
(i) KL (Pglmpgo) < o, and (ii) [HSIC;,(Py,) — HSIC, (P, )| > 25, > 0.

e Then, for all n,
S } S e 1—+/a/2
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Our Adversarial Pair

inf sup P" {‘HSICk(P) — [,
F, PeP

o Let G be NV (,u, E) Gaussians on R? = xM  RIm with covariance

m=1

1 .-- 00 --- 0]
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X=3050=, .. pffm 0 e R4
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where i =dy, j=di+1, pe (—1,1).
e We choose Py, = N (g, Xo) and Py, = N (p1, X1) with

po =0, € Rd, 3o =2(dy,d; +1,0) =1, € RdXd,
1 d dxd
p— —]_ E R , 2 — 2 d 7d _|_ ].7 E R 3
==l | = X(dy,dy + 1, pn)

Proof Sketch

e We use the reduction

sup P" {)HSICk (P) — F| > sn} > sup P {‘HSICk P) — £,
PeP Peg

> Sn}-
e For our adversarial pair (]P)QO, P@l), one can show that
(i) KL (P&HPQO) < = % for n > 2 (by the properties of KL diver-

gence), and

(ii) |HSICy, (P, ) — HSICy(Pg,)| > 25 1= 2-= > 0.

e

’Department of Statistics, London School of Economics

Main Result

e Let P be any class of Borel probability measures containing the d-
dimensional Gaussians, k = ®%:1km with &y, : R9m x RIm — R
continuous bounded shift-invariant characteristic kernels. Then, there
exists a constant ¢ > 0, such that for any n > 2
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inf sup P" {‘HSICk (P) — F),
F, PePpP

L —— > 0.
2(2y+1)4™

e Proof of the general case <= Bochner’s theorem (¢ > 0).

o Gaussian ky,-s: ¢ =

Discussion

e Many of the existing HSIC estimators on R? are minimax-optimal.

e Existing lower bounds (MMD [6], mean embedding [5], covariance op-
erator [8]) do not cover the HSIC case.

e Our result implies an equivalent lower bound on the estimation of the
covariance operator.
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