

The Minimax Rate of HSIC Estimation for Translation-Invariant Kernels*

Florian Kalinke¹ and Zoltán Szabó²

¹Institute for Program and Data Structures, Karlsruhe Institute of Technology ²Department of Statistics, London School of Economics

Quick Summary

- Hilbert-Schmidt independence criterion (HSIC [1, 3, 2, 4]; aka. distance covariance): popular dependency measure.
- Applications: feature selection, causal discovery, independence testing, clustering, ...
- Many known estimators converge at a rate of $\mathcal{O}_P(n^{-1/2})$.
- Contribution: For a large class of distributions and kernels on \mathbb{R}^d , faster rates are impossible.

HSIC

- Given $X = (X_m)_{m=1}^M \sim \mathbb{P}$ on $\mathcal{X} = \times_{m=1}^M \mathcal{X}_m$, \mathcal{X}_m is equipped with kernel k_m and feature map $\phi_{k_m} : \mathcal{X}_m \rightarrow \mathcal{H}_{k_m}$, HSIC takes the form

$$\text{HSIC}_k(\mathbb{P}) = \left\| \mu_k(\mathbb{P}) - \mu_k \left(\otimes_{m=1}^M \mathbb{P}_m \right) \right\|_{\mathcal{H}_k}, \quad k := \otimes_{m=1}^M k_m$$

with $\otimes_{m=1}^M \mathbb{P}_m$ the product of the marginal distributions \mathbb{P}_m , $m \in [M] := \{1, \dots, M\}$, and $\mu_k(\mathbb{P}) = \mathbb{E}_{X \sim \mathbb{P}} [\phi_k(X)]$.

- We set $\mathcal{X} = \mathbb{R}^d$, $\mathcal{X}_m = \mathbb{R}^{d_m}$, $d = \sum_{m=1}^M d_m$, that is, $\mathbb{R}^d = \times_{m=1}^M \mathbb{R}^{d_m}$.
- Gaussian kernels: $k_m(\mathbf{x}, \mathbf{y}) = e^{-\gamma \|\mathbf{x} - \mathbf{y}\|_{\mathbb{R}^{d_m}}^2}$.
- Translation-invariant kernels: There exist $\psi_m : \mathbb{R}^{d_m} \rightarrow \mathbb{R}$ such that $k_m(\mathbf{x}, \mathbf{y}) = \psi_m(\mathbf{x} - \mathbf{y})$ (contains Gaussian kernels).

Our Goal: Lower Bound

- \hat{F}_n := any estimator of $\text{HSIC}_k(\mathbb{P})$ based on n i.i.d. samples from \mathbb{P} .
- A positive sequence $(\xi_n)_{n=1}^\infty$ is a lower bound of HSIC estimation if there exists $c > 0$ such that
 - worst distribution $\inf_{\hat{F}_n} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{P}^n \left\{ \left| \text{HSIC}_k(\mathbb{P}) - \hat{F}_n \right| \geq c \xi_n \right\} > 0 \quad \forall n.$
- An estimator with a matching upper bound is called minimax-optimal.
- \rightarrow We want $\xi_n \asymp n^{-1/2}$.

Tool: Le Cam's Method

- Key [7]: There exists $\alpha > 0$ and a positive sequence $(s_n)_{n=1}^\infty$ such that for any fixed n , there exists an adversarial pair $(\mathbb{P}_{\theta_0}, \mathbb{P}_{\theta_1}) \in \mathcal{P} \times \mathcal{P}$ s.t. (i) $\text{KL}(\mathbb{P}_{\theta_1}^n || \mathbb{P}_{\theta_0}^n) \leq \alpha$, and (ii) $|\text{HSIC}_k(\mathbb{P}_{\theta_1}) - \text{HSIC}_k(\mathbb{P}_{\theta_0})| \geq 2s_n > 0$.
- Then, for all n ,

$$\inf_{\hat{F}_n} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{P}^n \left\{ \left| \text{HSIC}_k(\mathbb{P}) - \hat{F}_n \right| \geq s_n \right\} \geq \max \left(\frac{e^{-\alpha}}{4}, \frac{1 - \sqrt{\alpha/2}}{2} \right).$$

Our Adversarial Pair

- Let \mathcal{G} be $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ Gaussians on $\mathbb{R}^d = \times_{m=1}^M \mathbb{R}^{d_m}$ with covariance

$$\boldsymbol{\Sigma} = \boldsymbol{\Sigma}(i, j, \rho) = \begin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 1 & \rho & \cdots & 0 \\ 0 & \cdots & \rho & 1 & \cdots & 0 \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{d \times d},$$

where $i = d_1$, $j = d_1 + 1$, $\rho \in (-1, 1)$.

- We choose $\mathbb{P}_{\theta_0} = \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$ and $\mathbb{P}_{\theta_1} = \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ with

$$\begin{aligned} \boldsymbol{\mu}_0 &= \mathbf{0}_d \in \mathbb{R}^d, & \boldsymbol{\Sigma}_0 &= \boldsymbol{\Sigma}(d_1, d_1 + 1, 0) = \mathbf{I}_d \in \mathbb{R}^{d \times d}, \\ \boldsymbol{\mu}_1 &= \frac{1}{\sqrt{d_n}} \mathbf{1}_d \in \mathbb{R}^d, & \boldsymbol{\Sigma}_1 &= \boldsymbol{\Sigma}(d_1, d_1 + 1, \rho_n) \in \mathbb{R}^{d \times d}, \end{aligned}$$

with $\rho_n = \frac{1}{\sqrt{n}}$.

Proof Sketch

- We use the reduction

$$\sup_{\mathbb{P} \in \mathcal{P}} \mathbb{P}^n \left\{ \left| \text{HSIC}_k(\mathbb{P}) - \hat{F}_n \right| \geq s_n \right\} \geq \sup_{\mathbb{P} \in \mathcal{G}} \mathbb{P}^n \left\{ \left| \text{HSIC}_k(\mathbb{P}) - \hat{F}_n \right| \geq s_n \right\}.$$

- For our adversarial pair $(\mathbb{P}_{\theta_0}, \mathbb{P}_{\theta_1})$, one can show that

- (i) $\text{KL}(\mathbb{P}_{\theta_1}^n || \mathbb{P}_{\theta_0}^n) \leq \alpha := \frac{5}{4}$ for $n \geq 2$ (by the properties of KL divergence), and
- (ii) $|\text{HSIC}_k(\mathbb{P}_{\theta_1}) - \text{HSIC}_k(\mathbb{P}_{\theta_0})| \geq 2s_n := 2\frac{c}{\sqrt{n}} > 0$.

Main Result

- Let \mathcal{P} be any class of Borel probability measures containing the d -dimensional Gaussians, $k = \otimes_{m=1}^M k_m$ with $k_m : \mathbb{R}^{d_m} \times \mathbb{R}^{d_m} \rightarrow \mathbb{R}$ continuous bounded shift-invariant characteristic kernels. Then, there exists a constant $c > 0$, such that for any $n \geq 2$

$$\inf_{\hat{F}_n} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{P}^n \left\{ \left| \text{HSIC}_k(\mathbb{P}) - \hat{F}_n \right| \geq \frac{c}{\sqrt{n}} \right\} \geq \frac{1 - \sqrt{\frac{5}{8}}}{2}.$$

- Gaussian k_m -s: $c = \frac{\gamma}{2(2\gamma+1)^{\frac{d}{4}+1}} > 0$.
- Proof of the general case \Leftarrow Bochner's theorem ($c > 0$).

Discussion

- Many of the existing HSIC estimators on \mathbb{R}^d are minimax-optimal.
- Existing lower bounds (MMD [6], mean embedding [5], covariance operator [8]) do not cover the HSIC case.
- Our result implies an equivalent lower bound on the estimation of the covariance operator.

References

- [1] Arthur Gretton, Ralf Herbrich, Alexander Smola, Olivier Bousquet, and Bernhard Schölkopf. Kernel methods for measuring independence. *Journal of Machine Learning Research*, 6(70):2075–2129, 2005.
- [2] Niklas Pfister, Peter Bühlmann, Bernhard Schölkopf, and Jonas Peters. Kernel-based tests for joint independence. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 80(1):5–31, 2018.
- [3] Novi Quadrianto, Le Song, and Alex Smola. Kernelized sorting. In *Advances in Neural Information Processing Systems (NIPS)*, pages 1289–1296, 2009.
- [4] Zoltán Szabó and Bharath K. Sriperumbudur. Characteristic and universal tensor product kernels. *Journal of Machine Learning Research*, 18(233):1–29, 2018.
- [5] Ilya Tolstikhin, Bharath Sriperumbudur, and Krikamol Muandet. Minimax estimation of kernel mean embeddings. *Journal of Machine Learning Research*, 18:1–47, 2017.
- [6] Ilya Tolstikhin, Bharath Sriperumbudur, and Bernhard Schölkopf. Minimax estimation of maximal mean discrepancy with radial kernels. In *Advances in Neural Information Processing Systems (NIPS)*, pages 1930–1938, 2016.
- [7] Alexandre B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer, 2009.
- [8] Yang Zhou, Di-Rong Chen, and Wei Huang. A class of optimal estimators for the covariance operator in reproducing kernel Hilbert spaces. *Journal of Multivariate Analysis*, 169:166–178, 2019.