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Abstract

Kernel techniques are among the most influential approaches in data science and
statistics. Under mild conditions, the reproducing kernel Hilbert space associated
to a kernel is capable of encoding the independence of M ≥ 2 random variables.
Probably the most widespread independence measure relying on kernels is the so-
called Hilbert-Schmidt independence criterion (HSIC; also referred to as distance
covariance in the statistics literature). Despite various existing HSIC estimators
designed since its introduction close to two decades ago, the fundamental question
of the rate at which HSIC can be estimated is still open. In this work, we prove that
the minimax optimal rate of HSIC estimation on Rd for Borel measures containing
the Gaussians with continuous bounded translation-invariant characteristic kernels
is O

(
n−1/2

)
. Specifically, our result implies the optimality in the minimax sense

of many of the most-frequently used estimators (including the U-statistic, the
V-statistic, and the Nyström-based one) on Rd.

1 Introduction

Kernel methods [Steinwart and Christmann, 2008, Berlinet and Thomas-Agnan, 2004, Saitoh and
Sawano, 2016] allow embedding probability measures into reproducing kernel Hilbert spaces (RKHS;
[Aronszajn, 1950]) by use of a positive definite function, the kernel function. This approach has
gained considerable attention over the last 20 years. Such embeddings induce the so-called maximum
mean discrepancy (MMD; [Smola et al., 2007, Gretton et al., 2012]), which quantifies the discrepancy
of two probability measures by considering the RKHS norm of the distance of their respective
embeddings. MMD is a metric on the space of probability distributions if the kernel is characteristic
[Fukumizu et al., 2008, Sriperumbudur et al., 2010]. MMD is also an integral probability metric
[Zolotarev, 1983, Müller, 1997] where the underlying function class is chosen to be the unit ball in
the corresponding RKHS.

MMD allows for the quantification of dependence by considering the distance between the embedding
of a joint distribution and that of the product of its marginals. This construction gives rise to the
so-called Hilbert-Schmidt independence criterion (HSIC; [Gretton et al., 2005]), which is also equal
to the RKHS norm of the centered cross-covariance operator. In fact, one of the most widely-used
independence measures in statistics, distance covariance [Székely et al., 2007, Székely and Rizzo,
2009, Lyons, 2013], was shown to be equivalent to HSIC [Sejdinovic et al., 2013b] when the latter is
specialized to M = 2 components; Sheng and Sriperumbudur [2023] proved a similar result for the
conditional case. For M > 2 components [Quadrianto et al., 2009, Sejdinovic et al., 2013a, Pfister
et al., 2018], universality [Steinwart, 2001, Micchelli et al., 2006, Carmeli et al., 2010, Sriperumbudur
et al., 2011] of the kernels (km)Mm=1 (on the respective domains) underlying HSIC guarantees that
this measure captures independence [Szabó and Sriperumbudur, 2018]. In the case of M = 2,
characteristic (km)2m=1 suffice [Lyons, 2013].



HSIC has been deployed successfully in numerous contexts, including independence testing in batch
[Gretton et al., 2008, Wehbe and Ramdas, 2015, Bilodeau and Nangue, 2017, Górecki et al., 2018,
Pfister et al., 2018, Albert et al., 2022, Shekhar et al., 2023] and streaming [Podkopaev et al., 2023]
settings, feature selection [Camps-Valls et al., 2010, Song et al., 2012, Yamada et al., 2014, Wang
et al., 2022] with applications in biomarker detection [Climente-González et al., 2019] and wind
power prediction [Bouche et al., 2023], clustering [Song et al., 2007, Climente-González et al., 2019],
and causal discovery [Mooij et al., 2016, Pfister et al., 2018, Chakraborty and Zhang, 2019, Schölkopf
et al., 2021, Kalinke and Szabó, 2023]. In addition, HSIC has recently found successful applications in
sensitivity analysis [Veiga, 2015, Freitas Gustavo et al., 2023, Fellmann et al., 2023, Herrando-Pérez
and Saltré, 2024], in the context of uncertainty quantification [Stenger et al., 2020], for the analysis
of data augmentation methods for brain tumor detection [Anaya-Isaza and Mera-Jiménez, 2022], and
that of multimodal neural networks trained on neuroimaging data [Fedorov et al., 2024].

Many estimators for HSIC exist. The classical ones rely on U-statistics or V-statistics [Gretton
et al., 2005, Quadrianto et al., 2009, Pfister et al., 2018] and are known to converge at a rate of
OP

(
n−1/2

)
. In fact, the V-statistic-based estimators are obtained by replacing the population kernel

mean embedding with its empirical counterpart; estimating the mean embedding can be carried out
at a speed OP

(
n−1/2

)
[Smola et al., 2007, Theorem 2], which implies that HSIC can be estimated

at the same rate. Existing approximations such as Nyström HSIC [Kalinke and Szabó, 2023], also
achieve this rate under the assumption of an appropriate rate of decay of the effective dimension.
While all of these upper bounds match asymptotically, it is not known whether HSIC can be estimated
at a faster rate, that is, whether the upper bound of OP

(
n−1/2

)
is optimal in the minimax sense,

or if designing estimators achieving better rates is possible. Lower bounds for the related MMD
are known [Tolstikhin et al., 2016], but the existing analysis considers radial kernels and relies on
independent Gaussian distributions. Radial kernels are a special case of the more general class of
translation-invariant kernels that we consider.1 The reliance on independent Gaussian distributions
renders the analysis of Tolstikhin et al. [2016] inapplicable for HSIC estimation. We tackle both of
these severe restrictions in the present article.

We make the following contributions.

• We establish the minimax lower bound O
(
n−1/2

)
of HSIC estimation with M ≥ 2 components

on Rd with continuous bounded translation-invariant characteristic kernels. As this lower bound
matches the known upper bounds of the existing “classical” U-statistic and V-statistic-based
estimators, and that of the Nyström HSIC estimator, our result settles their minimax optimality.

• Specifically, our result also implies the minimax lower bound of O
(
n−1/2

)
for the estimation of

the cross-covariance operator, which can be further specialized to get back the minimax result
[Zhou et al., 2019, Theorem 5] on the estimation of the covariance operator.

The paper is structured as follows. Notations are introduced in Section 2. Section 3 is dedicated to
our main result on the minimax rate of HSIC estimation on Rd, with proof presented in Section 4.
An auxiliary result on the Kullback-Leibler divergence is shown in Appendix A.

2 Notations

In this section, we introduce a few notations N>0, [M ], In, 0n, 1n, AT, ⟨v,w⟩, ∥v∥Rd ,
bdiag (M1, . . . ,MN ), |A|, M+

1

(
Rd
)
, ψP, KL(P||Q), L2

(
Rd,Λ

)
, ∥f∥L2(Rd,Λ), supp(Λ), Hk,

ϕk, k, µk, MMDk, ⊗M
m=1Hkm

, ⊗M
m=1km, Pm, ⊗M

m=1Pm, Pn, OP (rn), O(an), an ≍ bn, HSICk,
and CX . Throughout the paper we consider random variables, probability measures, and kernels
on Rd.

For M ∈ N>0 := {1, 2, . . .}, let [M ] := {1, . . . ,M}. Denote by In the n× n-sized identity matrix
and by 0n = (0, . . . , 0)T ∈ Rn (resp. 1n = (1, . . . , 1)T ∈ Rn) a column vector of zeros (resp. ones).
The transpose of a matrix A ∈ Rd1×d2 is written as AT ∈ Rd2×d1 . For v,w ∈ Rd, ⟨v,w⟩ = vTw

stands for their Euclidean inner product; ∥v∥Rd =
√

⟨v,v⟩ is the associated Euclidean norm.

1The family of radial kernels encompasses, for example, Gaussians, mixtures of Gaussians, inverse multi-
quadratics, and Matérn kernels; the Laplace kernel is translation-invariant but not radial (with respect to the
traditionally-chosen Euclidean norm ∥·∥Rd ).
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bdiag (M1, . . . ,MN ) forms a block-diagonal matrix from its arguments (Mn)
N
n=1 (Mn ∈ Rdn×dn ,

n ∈ [N ]) and |A| denotes the determinant of a matrix A ∈ Rd×d.

The set of Borel probability measures on Rd is denoted by M+
1

(
Rd
)
. For a random variable

X ∼ P ∈ M+
1

(
Rd
)
, we denote its characteristic function by ψP(ω) = EX∼P

[
ei⟨ω,X⟩] with

ω ∈ Rd and i =
√
−1. Let P,Q ∈ M+

1

(
Rd
)
, assume that P is absolutely continuous w.r.t.

Q, and let
dP
dQ

denote the corresponding Radon-Nikodym derivative (of P w.r.t. Q). Then, the

Kullback-Leibler divergence of P and Q is defined as KL(P||Q) :=
∫
Rd log

(
dP
dQ

(x)

)
dP(x).

Given a measure space
(
Rd,B

(
Rd
)
,Λ
)
, we denote by L2(Rd,Λ) := L2

(
Rd,B

(
Rd
)
,Λ
)

the
Hilbert space of (equivalence classes of) measurable functions f :

(
Rd,B

(
Rd
))

→ (R,B (R)) for
which ∥f∥2L2(Rd,Λ) :=

∫
Rd |f(x)|2dΛ(x) <∞. The support of a probability measure Λ ∈ M+

1

(
Rd
)

denoted by supp(Λ) is the subset of Rd for which every open neighborhood of x ∈ Rd has positive
measure [Cohn, 2013, p. 207].

A function k : Rd × Rd → R is called a kernel if there exists a Hilbert space H and a feature
map ϕ : Rd → H such that k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H for all x,x′ ∈ Rd. A Hilbert space of
functions h : Rd → R is an RKHS Hk associated to a kernel k : Rd × Rd → R if k(·,x) ∈ Hk

and ⟨h, k(·,x)⟩Hk
= h(x) for all x ∈ Rd and h ∈ Hk.2 In this work, we assume all kernels to

be measurable and bounded.3 The function ϕk(x) := k(·,x) is the canonical feature map, and
k(x,x′) = ⟨k(·,x), k(·,x′)⟩Hk

= ⟨ϕk(x), ϕk(x′)⟩Hk
for all x,x′ ∈ Rd. A function κ : Rd → R

is called positive definite if
∑

i,j∈[n] cicjκ(xi − xj) ≥ 0 for all n ∈ N>0, c = (ci)
n
i=1 ∈ Rn,

and {xi}ni=1 ⊂ Rd. A kernel k : Rd × Rd → R is said to be translation-invariant if there exists
a positive definite function κ : Rd → R such that k(x,x′) = κ(x − x′) for all x,x′ ∈ Rd. By
Bochner’s theorem [Wendland, 2005, Theorem 6.6] (recalled in Theorem B.1) for a continuous
bounded translation-invariant kernel k : Rd × Rd → R there exists a finite non-negative Borel
measure Λk such that

k(x,y) =

∫
Rd

e−i⟨x−y,ω⟩dΛk(ω) (1)

for all x,y ∈ Rd. The (kernel) mean embedding of a probability measure P ∈ M+
1

(
Rd
)

is

µk(P) =
∫
Rd

ϕk(x)dP(x) ∈ Hk,

where the integral is meant in Bochner’s sense [Diestel and Uhl, 1977, Chapter II.2]; the boundedness
of k ensures that it is well-defined. For P,Q ∈ M+

1

(
Rd
)

one can define the (semi-)metric called
maximum mean discrepancy [Smola et al., 2007, Gretton et al., 2012] as

MMDk(P,Q) = ∥µk(P)− µk(Q)∥Hk
.

If the mean embedding µk is injective, MMD is a metric and the kernel k is called characteris-
tic [Fukumizu et al., 2008, Sriperumbudur et al., 2010, Szabó and Sriperumbudur, 2018].

Let Rd = ×M
m=1Rdm (d =

∑M
m=1 dm) and assume that each domain Rdm is equipped with a

kernel km : Rdm × Rdm → R with associated RKHS Hkm
(m ∈ [M ]). The tensor product Hilbert

space of (Hkm)
M
m=1 is denoted by ⊗M

m=1Hkm ; it is an RKHS [Berlinet and Thomas-Agnan, 2004,
Theorem 13] with the tensor product kernel k = ⊗M

m=1km : Rd × Rd → R defined by

k
(
(xm)Mm=1, (x

′
m)Mm=1

)
=

∏
m∈[M ]

km(xm,x
′
m) for all xm,x

′
m ∈ Rdm , m ∈ [M ].

The kernel k has the canonical feature map ϕk
(
(xm)Mm=1

)
= ⊗M

m=1ϕkm
(xm) ∈ ⊗M

m=1Hkm
=:

Hk (xm ∈ Rdm ,m ∈ [M ]). Let X = (Xm)Mm=1 be a random variable taking values in Rd

2For fixed x ∈ Rd, the function k(·,x) : Rd → R means x′ 7→ k(x′,x).
3Boundedness of the kernel, that is, supx,x′∈Rd k(x,x′) < ∞, implies boundedness of the feature map, that

is, supx∈Rd ∥ϕk(x)∥Hk
< ∞ (and vice versa); it is also equivalent to supx∈Rd k(x,x) < ∞.
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with joint distribution P ∈ M+
1

(
Rd
)

and marginal distributions Pm ∈ M+
1

(
Rdm

)
(m ∈ [M ];

d =
∑M

m=1 dm). We write ⊗M
m=1Pm ∈ M+

1

(
Rd
)

for the product of measures Pm (m ∈ [M ]).
Specifically, Pn := ⊗n

i=1P ∈ M+
1

((
Rd
)n)

denotes the n-fold product of P. For a sequence of
real-valued random variables (Xn)

∞
n=1 and a sequence (rn)

∞
n=1 (rn > 0 for all n), Xn = OP (rn)

denotes that Xn

rn
is bounded in probability. For positive sequences (an)∞n=1 and (bn)

∞
n=1, bn = O(an)

if there exist constants C > 0 and n0 ∈ N>0 such that bn ≤ Can for all n ≥ n0; an ≍ bn
if an = O (bn) and bn = O (an). One can define our quantity of interest, the Hilbert-Schmidt
independence criterion (HSIC; [Gretton et al., 2005, Quadrianto et al., 2009, Pfister et al., 2018,
Szabó and Sriperumbudur, 2018]), as

HSICk(P) = MMDk

(
P,⊗M

m=1Pm

)
= ∥CX∥Hk

,

CX = µk(P)− µk

(
⊗M

m=1Pm

)
∈ Hk, (2)

and CX denotes the centered cross-covariance operator.

3 Results

This section is dedicated to our results: The minimax lower bound for the estimation of HSICk(P),
where k is a product of continuous bounded translation-invariant characteristic kernels is given in
Theorem 1(ii). For the specific case where k is a product of Gaussian kernels (stated in Theorem 1(i)),
the constant in the lower bound is made explicit. Theorem 1(ii) also helps to establish a lower bound
on the estimation of the cross-covariance operator (Corollary 1).

Before presenting our results, we recall the framework of minimax estimation [Tsybakov, 2009]
adapted to our setting. Let F̂n denote any estimator of HSICk(P) based on n i.i.d. samples from P.
A sequence (ξn)

∞
n=1 (ξn > 0 for all n) is said to be a lower bound of HSIC estimation w.r.t. a class

P of Borel probability measures on Rd if there exists a constant c > 0 such that

inf
F̂n

sup
P∈P

Pn
{
ξ−1
n

∣∣∣HSICk(P)− F̂n

∣∣∣ ≥ c
}
> 0. (3)

If a specific estimator of HSIC F̃n has an upper bound that matches (ξn)
∞
n=1 up to constants, that is,∣∣∣HSICk(P)− F̃n

∣∣∣ = OP (ξn) , (4)

then F̃n is called minimax optimal.

We use Le Cam’s method [Le Cam, 1973, Tsybakov, 2009] (recalled in Theorem B.5) to obtain
bounds as in (3); estimators of HSIC achieving the bounds in (4) with ξn = n−1/2 are quoted in the
introduction. The key to the application of the method is to find an adversarial pair of distributions
(Pθ0 ,Pθ1) ∈ P × P for which

1. there exist positive constants α, and n0 ∈ N>0 such that for all n ≥ n0, KL
(
Pn
θ1
||Pn

θ0

)
≤ α,

in other words, the corresponding n-fold product measures must be similar in the sense of
Kullback-Leibler divergence, but

2. |HSICk(Pθ1)−HSICk(Pθ0)| ≥ 2s > 0, that is, their corresponding values of HSIC must be
dissimilar. In particular, to establish the minimax optimality of existing estimators w.r.t. their
known upper bounds, we must find an adversarial pair that satisfies s ≍ n−1/2.

The proof of the first part of our statement relies on the following Lemma 1 which yields the analytical
value of HSICk (N (µ,Σ)), where k = ⊗M

m=1km is the product of Gaussian kernels km (m ∈ [M ])
and N (µ,Σ) denotes the multivariate normal distribution with mean µ ∈ Rd and covariance matrix
Σ ∈ Rd×d.

Lemma 1 (Analytical value of HSIC for the Gaussian setting). Let us consider the Gaus-
sian kernel k(x,y) = e−

γ
2 ∥x−y∥2

Rd (γ > 0, x,y ∈ Rd) and Gaussian random variable
X = (Xm)Mm=1 ∼ N (m,Σ) =: P, where Xm ∈ Rdm (m ∈ [M ]), m = (mm)Mm=1 ∈ Rd,
Σ = [Σi,j ]i,j∈[M ] ∈ Rd×d, Σi,j ∈ Rdi×dj , and d =

∑
m∈[M ] dm. In this case, with Σ1 = Σ and
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Σ2 = bdiag(Σ1,1, . . . ,ΣM,M ), we have

HSIC2
k(P) =

1

|2γΣ1 + Id|
1
2

+
1

|2γΣ2 + Id|
1
2

− 2

|γΣ1 + γΣ2 + Id|
1
2

.

In this work, we focus on continuous bounded translation-invariant kernels, which are fully character-
ized by Bochner’s theorem [Wendland, 2005, Theorem 6.6]; the theorem states that a function on Rd

is positive definite if and only if it is the Fourier transform of a finite nonnegative measure.4 We use
this description to obtain our main result, which is as follows.

Theorem 1 (Lower bound for HSIC estimation on Rd). Let P be a class of Borel probability measures
over Rd containing the d-dimensional Gaussian distributions. Let d =

∑
m∈[M ] dm and F̂n denote

any estimator of HSICk(P) with n ≥ 2 i.i.d. samples from P ∈ P . Assume further that k = ⊗M
m=1km

where either, for m ∈ [M ],

(i) the kernels km : Rdm × Rdm → R are Gaussian with common bandwidth parameter γ > 0

defined by (xm,x
′
m) 7→ e

− γ
2 ∥xm−x′

m∥2

Rdm (xm,x
′
m ∈ Rdm ), or

(ii) the kernels km : Rdm × Rdm → R are continuous bounded translation-invariant characteristic
kernels.

Then it holds that

inf
F̂n

sup
P∈P

Pn

{∣∣∣HSICk (P)− F̂n

∣∣∣ ≥ c√
n

}
≥

1−
√

5
8

2
,

with (i) the constant c = γ

2(2γ+1)
d
4
+1

> 0 (depending on γ and d only) in the first case, or (ii) some

constant c > 0 in the second case.

We note that while Theorem 1(ii) applies to the more general class of translation-invariant kernels,
we include Theorem 1(i) as it makes the constant c explicit.

The following corollary allows to recover the recent lower bound on the estimation of the covariance
operator by Zhou et al. [2019, Theorem 5] as a special case that we detail in Remark 1(e).

Corollary 1 (Lower bound on cross-covariance operator estimation). In the setting of Theorem 1(ii),
let F̂n denote any estimator of the centered cross-covariance operator CX ∈ Hk defined in (2) with
n ≥ 2 i.i.d. samples from P ∈ P . Then it holds that

inf
F̂n

sup
P∈P

Pn

{∥∥∥CX − F̂n

∥∥∥
Hk

≥ c√
n

}
≥

1−
√

5
8

2
,

for some constant c > 0.

Remark 1.

(a) Validness of HSIC. Though generally the characteristic property of (km)Mm=1-s is not enough
[Szabó and Sriperumbudur, 2018, Example 2] for M > 2 to ensure the I-characteristic property
of k = ⊗M

m=1km (in other words, that HSICk(P) = 0 iff. P = ⊗M
m=1Pm), on Rd under the

imposed continuous bounded translation-invariant assumption (i) k being characteristic, (ii) k
being I-characteristic, and (iii) (km)Mm=1-s being characteristic are equivalent (Theorem B.4).

(b) Minimax optimality of existing HSIC estimators. The lower bounds in Theorem 1 asymptotically
match the known upper bounds of the U-statistic and V-statistic-based estimators of ξn = n−1/2.
The Nyström-based HSIC estimator achieves the same rate under an appropriate decay of the
eigenspectrum of the respective covariance operator. Hence, Theorem 1 implies the optimality of
these estimators on Rd with continuous bounded translation-invariant characteristic kernels in
the minimax sense.

4We note that for many translation-invariant kernels, the corresponding spectral measures are known [Sripe-
rumbudur et al., 2010, Table 2].
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(c) Difference compared to Tolstikhin et al. [2016] (minimax MMD estimation). We note that a
lower bound for the related MMDk exists. However, the adversarial distribution pair (Pθ1 ,Pθ0)
constructed by Tolstikhin et al. [2016, Theorem 1] to obtain the lower bound on MMD estimation
has a product structure which implies that |HSICk(Pθ1)−HSICk(Pθ0)| = 0 and hence it is not
applicable in our case of HSIC; Tolstikhin et al. [2016, Theorem 2] with radial kernels has the
same restriction.

(d) Difference compared to Tolstikhin et al. [2017] (minimax mean embedding estimation). The
estimation of the mean embedding µk(P) is known to have a minimax rate of O

(
n−1/2

)
. But,

this rate does not imply an optimal lower bound for the estimation of MMD as is evident from the
two works [Tolstikhin et al., 2016, 2017]. The same conclusion holds for HSIC estimation.

(e) Difference compared to Zhou et al. [2019] (minimax covariance operator estimation). For the
related problem of estimating the centered covariance operator

CXX =

∫
Rd

(ϕk(x)− µk(P))⊗ (ϕk(x)− µk(P)) dP(x) ∈ Hk ⊗Hk,

Zhou et al. [2019, Theorem 5] give the lower bound

inf
F̂n

sup
P∈P

Pn

{∥∥∥CXX − F̂n

∥∥∥
Hk⊗Hk

≥ c√
n

}
≥ 1/8

in the same setting as in Theorem 1(ii), where F̂n is any estimator of the centered covariance
CXX , and c is a positive constant. By noting that the centered covariance is the centered
cross-covariance of a random variable with itself, Corollary 1 recovers their result.

The next section contains our proofs.

4 Proofs

This section is dedicated to our proofs. We present the proof of Lemma 1 in Section 4.1, that of
Theorem 1 in Section 4.2, and that of Corollary 1 in Section 4.3.

4.1 Proof of Lemma 1

As
HSIC2

k(P) = MMD2
k(P,Q) = ∥µk(P)− µk(Q)∥2Hk

= ⟨µk(P), µk(P)⟩Hk
+ ⟨µk(Q), µk(Q)⟩Hk

− 2⟨µk(P), µk(Q)⟩Hk

with Q = ⊗M
m=1Pm = N (m,bdiag(Σ1,1, . . . ,ΣM,M )), Pm = N (mm,Σm,m), it is suf-

ficient to be able to compute ⟨µk(P), µk(Q)⟩Hk
-type quantities with P = N (m1,Σ1) and

Q = N (m2,Σ2). One can show [Muandet et al., 2011, Table 1] that ⟨µk(P), µk(Q)⟩Hk
=

e
− 1

2
(m1−m2)T(Σ1+Σ2+γ−1Id)

−1
(m1−m2)

|γΣ1+γΣ2+Id|
1
2

. Using this fact and that m = m1 = m2, the result follows.

4.2 Proof of Theorem 1

The setup and the upper bound on KL(Pn
θ1
||Pn

θ0
) agree for (i) and (ii) but the methods that we use

to lower bound |HSICk(Pθ1)−HSICk(Pθ0)| differ. We structure the proof accordingly and present
the overlapping part before we branch out into (i) and (ii). Both parts of the statement rely on Le
Cam’s method, which we state as Theorem B.5 for self-completeness.

To construct the adversarial pair, we consider a class G of Gaussian distributions over Rd such that
every element N

(
µ,Σ

)
∈ G, with

Σ = Σ(i, j, ρ) =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 ρ · · · 0
0 · · · ρ 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 1


∈ Rd×d, (5)
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and (fixed) i = d1, j = d1 + 1, ρ ∈ (−1, 1). In other words, Σ is essentially the d-dimensional
matrix Id except for the (i, j) and (j, i) entry; both entries are identical to ρ, and they specify
the correlation of the respective coordinates. This family of distributions is indexed by a tuple
(µ, ρ) ∈ Rd × (−1, 1) =: A and, for a ∈ A, we write Pa for the associated distribution. To
bring ourselves into the setting of Theorem B.5, we fix n ∈ N>0, choose X = Rd, set Θ = {θa :=
HSICk(Pa) : a ∈ A}, PΘ = {Pn

a : a ∈ A} = {Pn
a : θa ∈ Θ}, and use the metric (x, y) 7→ |x−y|

for x, y ∈ R. Hence, the data D ∼ Pθ ∈ PΘ. For brevity, let F : A → R stand for a 7→ HSICk(Pa),
and let F̂n stand for the corresponding estimator based on n samples.

As G ⊆ P , it holds for every positive s that

sup
P∈P

Pn
{∣∣∣HSICk (P)− F̂n

∣∣∣ ≥ s
}
≥ sup

P∈G
Pn
{∣∣∣HSICk (P)− F̂n

∣∣∣ ≥ s
}
.

Let Pθ0 = N (µ0,Σ0) and Pθ1 = N (µ1,Σ1) with

µ0 = 0d ∈ Rd, Σ0 = Σ(d1, d1 + 1, 0) = Id ∈ Rd×d,

µ1 =
1√
dn

1d ∈ Rd, Σ1 = Σ(d1, d1 + 1, ρn) ∈ Rd×d,

where ρn ∈ (−1, 1) will be chosen appropriately later. We now proceed to upper bound
KL
(
Pn
θ1
||Pn

θ0

)
and lower bound |F (θ1)− F (θ0)|.

Upper bound for KL divergence Lemma A.1 implies that with ρ2n = 1
n , one has the bound

KL
(
Pn
θ1
||Pn

θ0

)
≤ α := 5

4 for n ≥ 2.

Lower bound (i): Gaussian kernels. Recall that the considered kernel is k(x,y) = e−
γ
2 ∥x−y∥2

Rd

(γ > 0). The idea of the proof is as follows.

1. We express |F (θ1)− F (θ0)| in closed form as a function of γ, ρn, and d.

2. Using the analytical form obtained in the 1st step, we construct the lower bound.

This is what we detail next.

• Analytical form of |F (θ1)− F (θ0)|: Using the fact that HSICk(Pθ0) = 0, we have that∣∣F (θ1)− F (θ0)︸ ︷︷ ︸
=0

∣∣2 = F 2 (θ1) = HSIC2
k (Pθ1) = MMD2

k (N (µ1,Σ1) ,N (µ1, Id))

= ∥µk (N (µ1,Σ1))− µk (N (µ1, Id))∥2Hk

= ⟨µk (N (µ1,Σ1)) , µk (N (µ1,Σ1))⟩Hk︸ ︷︷ ︸
(i)

+ ⟨µk (N (µ1, Id)) , µk (N (µ1, Id))⟩Hk︸ ︷︷ ︸
(ii)

−2 ⟨µk (N (µ1,Σ1)) , µk (N (µ1, Id))⟩Hk︸ ︷︷ ︸
(iii)

,

which we compute term-by-term with Lemma 1, and obtain

(i) = |2γΣ1 + Id|−1/2
=
[
(2γ + 1)

d−2
(
(2γ + 1)

2 − (2γρn)
2
)]−1/2

,

(ii) = |2γId + Id|−1/2
=
[
(2γ + 1)

d
]−1/2

,

(iii) = |γΣ1 + γId + Id|−1/2
=
[
(2γ + 1)

d−2
(
(2γ + 1)

2 − (γρn)
2
)]−1/2

.

Combining (i), (ii), and (iii) yields that

HSIC2
k (Pθ1) = (i) + (ii)− 2(iii)

=
[
(2γ + 1)

d−2
(
(2γ + 1)

2 − (2γρn)
2
)]−1/2

+
[
(2γ + 1)

d
]−1/2

− 2
[
(2γ + 1)

d−2
(
(2γ + 1)

2 − (γρn)
2
)]−1/2

.
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• Lower bound on |F (θ1) − F (θ0)|: Next, we show that there exists c > 0 such that for any
n ∈ N>0 it holds that HSIC2

k (Pθ1) ≥ c
n .

For 0 < x <
(
1 + 1

2γ

)2
, let us consider the function

fc(x) =
[
(2γ + 1)

d−2
(
(2γ + 1)

2 − 4γ2x
)]−1/2

+
[
(2γ + 1)

d
]−1/2

− 2
[
(2γ + 1)

d−2
(
(2γ + 1)

2 − γ2x
)]−1/2

− cx

=
[
zd−2

(
z2 − 4γ2x

)]−1/2
+
(
zd
)−1/2 − 2

[
zd−2

(
z2 − γ2x

)]−1/2 − cx,

with the shorthand z := 2γ + 1.5 With this notation, fc(1/n) = HSIC2
k (Pθ1)− c/n; our aim is

to determine c > 0 such that fc(1/n) ≥ 0 for any positive integer n. To achieve this goal, notice
that fc(0) = 0, and

f ′c(x) =
2γ2zd−2

[zd−2 (z2 − 4xγ2)]
3/2

− γ2zd−2

[zd−2 (z2 − xγ2)]
3/2

− c

>
2γ2zd−2

[zd−2 (z2 − xγ2)]
3/2

− γ2zd−2

[zd−2 (z2 − xγ2)]
3/2

− c =
γ2zd−2

[zd−2 (z2 − xγ2)]
3/2

− c

>
γ2zd−2

(zd−2z2)
3/2

− c =
γ2

z2
√
zd

− c =
γ2

(2γ + 1)
2
√

(2γ + 1)
d
− c.

Choosing now c = γ2

(2γ+1)2
√

(2γ+1)d
> 0, we have f ′c(x) ≥ 0, so f is a nondecreasing function.

Note that fc(1/n) = HSIC2
k (Pθ1) − c/n ≥ 0, with x = 1/n and

(
1 + 1

2γ

)−2

< 1 ≤ n < ∞.
By taking the positive square root, this means that

HSICk (Pθ1) ≥
γ

(2γ + 1)
(
(2γ + 1)

d
)1/4 √

n

=: 2s

holds for n ≥ 1, implying that |F (θ1)− F (θ0)| ≥ 2s > 0.

We conclude the proof by Theorem B.5 using that α = 5
4 and max

(
e−

5
4

4 ,
1−

√
5
8

2

)
=

1−
√

5
8

2 .

Lower bound (ii): translation-invariant kernels. Let Λk denote the spectral measure associated
to the kernel k according to (1). Using the fact that HSICk(Pθ0) = 0, we have for |F (θ1)− F (θ0)|
that∣∣F (θ1)− F (θ0)︸ ︷︷ ︸

=0

∣∣2 = F 2 (θ1) = HSIC2
k (Pθ1) = MMD2

k (N (µ1,Σ1) ,N (µ1,Σ0))

(i)
=
∥∥ψN (µ1,Σ1) − ψN (µ1,Σ0)

∥∥2
L2(Rd,Λk)

(ii)
=

∫
Rd

∣∣∣ei⟨µ1,ω⟩− 1
2 ⟨ω,Σ1ω⟩ − ei⟨µ1,ω⟩− 1

2 ⟨ω,Σ0ω⟩
∣∣∣2 dΛk(ω)

=

∫
Rd

∣∣∣ei⟨µ1,ω⟩
∣∣∣2︸ ︷︷ ︸

=1

∣∣∣e− 1
2 ⟨ω,Σ1ω⟩ − e−

1
2 ⟨ω,Σ0ω⟩

∣∣∣2 dΛk(ω)

(iii)

≥
∫
A

∣∣∣e− 1
2 ⟨ω,Σ1ω⟩ − e−

1
2 ⟨ω,Σ0ω⟩

∣∣∣2 dΛk(ω)
(iv)

≥ ρ2n

∫
A

[h′ω(0)]
2
dΛk(ω)︸ ︷︷ ︸

=:(2c)2

(v)
=

(2c)2

n︸ ︷︷ ︸
=:(2s)2>0

,

5Notice that (2γ + 1)2 − γ2x > (2γ + 1)2 − 4γ2x, and (2γ + 1)2 − 4γ2x > 0 ⇔ x <
(
1 + 1

2γ

)2

for a
positive x; hence the imposed assumption on x ensures that the function fc is well-defined.
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where (i) holds by Sriperumbudur et al. [2010, Corollary 4(i)] (recalled in Theorem B.2). (ii)

follows from the analytical form ψN (µ,Σ)(t) = ei⟨µ,t⟩− 1
2 ⟨t,Σt⟩ of the characteristic function of a

multivariate normal distribution N (µ,Σ). For (iii), we define the non-empty open set

A =
{
ω = (ω1, . . . , ωd)

T ∈ Rd : ωd1ωd1+1 < 0
}
⊂ Rd,

and use that the integration of a non-negative function over a subset yields a lower bound. In (iv), fix
ω ∈ A and let

hω : ρ ∈ [0, 1] 7→ e−
1
2 ⟨ω,Σ(d1,d1+1,ρ)ω⟩ ∈ (0, 1].

Note that hω(ρ) = e−
1
2 (ω

Tω+2ρωd1
ωd1+1); hω is continuous on [0, 1] and differentiable on (0, 1).

Hence for any ρ ∈ (0, 1), by the mean value theorem, there exists ρ̃ ∈ (0, 1) such that

hω(ρ)− hω(0) = ρh′ω(ρ̃) ≥ ρ min
c∈[0,1]

h′ω(c).

We have the first and second derivatives

h′ω(c) = −ωd1ωd1+1e
− 1

2 (ω
Tω+2cωd1

ωd1+1), h′′ω(c) = ω2
d1
ω2
d1+1e

− 1
2 (ω

Tω+2cωd1
ωd1+1) > 0,

which implies that c 7→ h′ω(c) is a strictly increasing function of c and that it attains its minimum at
c = 0, that is,

hω(ρ)− hω(0) ≥ ρh′ω(0) > 0,

where the 2nd inequality holds by ρ > 0 and ω ∈ A. This shows that

[hω(ρ)− hω(0)]
2 ≥ [ρh′ω(0)]

2
,

and the monotonicity of integration gives (iv). For (v), we note that the kernel k = ⊗M
m=1km

is characteristic [Szabó and Sriperumbudur, 2018, Theorem 4] (recalled in Theorem B.4) as the
(km)Mm=1-s are characteristic. Thus, supp (Λk) = Rd (see Sriperumbudur et al. [2010, Theorem 9];
recalled in Theorem B.3), implying that Λk(A) > 0. (v) follows from the positivity of h′ω(0) (for
any ω ∈ A), from the fact that the integral of a positive function on a set with positive measure is
positive, and from our choice of ρn = n−1/2.

Now, by taking the positive square root, we have

|F (θ1)− F (θ0)| ≥
2c√
n
=: 2s. (11)

We conclude by the application of Theorem B.5 using that α = 5
4 and max

(
e−

5
4

4 ,
1−

√
5
8

2

)
=

1−
√

5
8

2 .

4.3 Proof of Corollary 1

We use the same argument as in the beginning of the proof of Theorem 1 in Section 4.2 but adjust the
setting in which we apply Theorem B.5. Specifically, we now let Θ = {θa := CXa

: Xa ∼ Pa, a ∈
A} with CX defined as in (2) be the set of covariance operators, use the metric (x, y) 7→ ∥x− y∥Hk

for x, y ∈ Hk, and keep the remaining part of the setup the same. Hence, it remains to lower bound∥∥CXθ1
− CXθ0

∥∥
Hk

. By using that HSIC is the RKHS norm of the cross-covariance operator, we
obtain that∥∥CXθ1

− CXθ0

∥∥
Hk

(i)

≥
∣∣∣ ∥∥CXθ1

∥∥
Hk︸ ︷︷ ︸

=HSICk(Pθ1)

−
∥∥CXθ0

∥∥
Hk︸ ︷︷ ︸

=HSICk(Pθ0)

∣∣∣ = |F (θ1)− F (θ0)|
(ii)

≥ 2s =
2c√
n
,

where (i) holds by the reverse triangle inequality, F is defined as in Section 4.2, and (ii) is guaranteed
by (11) for c > 0. We conclude as in the proof of Theorem 1(ii) to obtain the stated result.
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A Auxiliary Result

In this section, we collect an auxiliary result. Lemma A.1 presents an upper bound on the Kullback-
Leibler divergence between multivariate normal distributions.

Lemma A.1 (Upper bound on KL divergence). Let d =
∑M

m=1 dm, with dm ∈ N>0 (m ∈ [M ]). Fix
i ∈ [d1]. Let j = i + 1, Pθ0 = N (0d, Id), and Pθ1 = N (µ1,Σ1), with µ1 = 1√

dn
1d ∈ Rd, and

Σ1 = Σ(i, j, ρn) ∈ Rd×d defined as in (5) (ρn ∈ (0, 1)). Then, for 2 ≤ n ∈ N,

KL(Pn
θ1 ||P

n
θ0) ≤

1

2n
+
n

2

ρ2n
1− ρ2n

.

In particular, for ρ2n = 1/n, it holds that KL(Pn
θ1
||Pn

θ0
) ≤ 5

4 .

Proof. With µ0 = 0d and Σ0 = Id, we obtain that

KL(Pn
θ1 ||P

n
θ0)

(a)
=
∑
i∈[n]

KL(Pθ1 ||Pθ0)

(b)
=
n

2

[
tr(Σ−1

0 Σ1) + (µ0 − µ1)
TΣ−1

0 (µ0 − µ1)− d+ ln

(
|Σ0|
|Σ1|

)]
=
n

2

[
tr(Σ1)︸ ︷︷ ︸

=d

+ ∥µ1∥2Rd︸ ︷︷ ︸
= 1

n2

−d+ ln

(
1

|Σ1|︸ ︷︷ ︸
(c)
= 1

1−ρ2n

)]

=
1

2n
+
n

2
ln

(
1

1− ρ2n

)
(d)

≤ 1

2n
+
n

2

ρ2n
1− ρ2n

(e)

≤ 5

4
,

where (a) is implied by Lemma B.1, (b) follows from Lemma B.2, (c) follows from the definition of
the determinant, (d) is the consequence of the inequality ln(x) ≤ x− 1 holding for x > 0, and (e)
holds for n ≥ 2 and ρ2n = 1/n as

n

2

1/n

1− 1/n︸ ︷︷ ︸
1

n−1

≤ 1 ⇐⇒ n

2

1

n− 1
≤ 1 ⇐⇒ n ≤ 2(n− 1) ⇐⇒ n ≥ 2,

and in this case (for n ≥ 2) one has that 1
2n ≤ 1

4 .

B External Theorems

For self-completeness, we include the external statements that we use. The well-known result by
Bochner, stated in Theorem B.1, completely characterizes continuous bounded translation-invariant
kernels. Theorem B.2 allows expressing MMD with continuous bounded translation-invariant kernels
in terms of characteristic functions, and Theorem B.3 gives an equivalent condition for a continuous
bounded translation-invariant kernel to be characteristic. Theorem B.4 connects characteristic kernels
to characteristic product kernels and to I-characteristic product kernels on Rd (we include only the
part relevant to our paper for brevity). We recall Le Cam’s method in Theorem B.5 and collect results
on the Kullback-Leibler divergence in Lemma B.1 and Lemma B.2.
Theorem B.1 (Bochner; Theorem 6.6; Wendland [2005]). A continuous function κ : Rd → R is
positive definite if and only if it is the Fourier transform of a finite nonnegative Borel measure Λ on
Rd, that is,

κ(x) =

∫
Rd

e−i⟨x,ω⟩dΛ(ω), for all x ∈ Rd.

Theorem B.2 (Corollary 4(i); Sriperumbudur et al. [2010]). Let k : Rd × Rd → R be a continuous
bounded translation-invariant kernel. Then, for any P,Q ∈ M+

1

(
Rd
)
,

MMD2
k(P,Q) = ∥ψP − ψQ∥2L2(Rd,Λk)

,

with ψP and ψQ being the characteristic functions of P and Q, respectively, and Λk defined in (1).
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Theorem B.3 (Theorem 9; Sriperumbudur et al. [2010]). Suppose k : Rd × Rd → R is a continuous
bounded translation-invariant kernel. Then k is characteristic if and only if supp(Λk) = Rd, with
Λk defined as in (1).
Theorem B.4 (Theorem 4; Szabó and Sriperumbudur [2018]). Suppose km : Rdm × Rdm → R is
continuous bounded and translation-invariant kernel for all m ∈ [M ]. Then the following statements
are equivalent:
(i) (km)Mm=1-s are characteristic;

(ii) ⊗M
m=1km is characteristic;

(iii) ⊗M
m=1km is I-characteristic.

The next statement follows directly from Tsybakov [2009, Eq. (2.9)] and Tsybakov [2009, Theo-
rem 2.2].
Theorem B.5 (Theorem 2.2; Tsybakov [2009]). Let X be a measurable space, (Θ, d) is a semi-metric
space, and PΘ = {Pθ : θ ∈ Θ} is a class of probability measures on X indexed by Θ. We observe
data D ∼ Pθ ∈ PΘ with some unknown parameter θ. The goal is to estimate θ. Let θ̂ = θ̂(D) be
an estimator of θ based on D. Assume that there exist θ0, θ1 ∈ Θ such that d(θ0, θ1) ≥ 2s > 0 and
KL(Pθ1 ||Pθ0) ≤ α <∞ for α > 0. Then

inf
θ̂

sup
θ∈Θ

Pθ

(
d
(
θ̂, θ
)
≥ s
)
≥ max

(
e−α

4
,
1−

√
α/2

2

)
.

We have the following property of the Kullback-Leibler divergence for product measures [Tsybakov,
2009, p. 85].
Lemma B.1 (KL divergence of product measures). Let P = ⊗n

i=1Pi and Q = ⊗n
i=1Qi. Then

KL(P||Q) =
∑
i∈[n]

KL(Pi||Qi).

The following lemma [Duchi, 2007, p. 13] shows that the Kullback-Leibler divergence of multivariate
Gaussians can be computed in closed form.
Lemma B.2 (KL divergence of Gaussians). The KL divergence of two normal distributions
N (µ1,Σ1) and N (µ0,Σ0) on Rd is

KL(N (µ1,Σ1)||N (µ0,Σ0)) =
tr(Σ−1

0 Σ1) + (µ0 − µ1)
TΣ−1

0 (µ0 − µ1)− d+ ln
(

|Σ0|
|Σ1|

)
2

.
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