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Quick Summary

e [aster estimation of Hilbert-Schmidt independence criterion
(HSIC; M =2: [2], M > 2: |5, 6, 4], validness: [7]).

e Guarantee: same convergence rate as the quadratic time estimator.

e Fxisting accelerations: M = 2, works efficiently in practice but
without theoretical guarantees [8].

e Experiments on synthetic examples, dependency testing of media
annotations, and causal discovery.

HSIC

o Given X = (Xm)%:1 ~Pon X = X%:l)(m, X is equipped with
kernel kp, and feature map ¢y, = Xy, — Hy, , HSIC takes the form

HSICH(P) = [}11(B) — i (@0iiBm) |,

with ®%:1Pm the product of the marginal distributions Py,, m € [M|] :=
{1,..., M}, and pg(P) = Exp [¢r(X))].
e Given an i.i.d. sample of M-tuples of size n
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from P, the V-statistic based estimator takes the form
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with Gram matrices
Kkpnn = [km (x%zax%l)} - c R"™", (1)
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and can be computed in O (n2) time.

Proposed Nystrom-based estimator

o [ct I@’n/:{(ij%, . ,i}w) e (ﬂ”/, . ,i%)} be a subsample of P,,.
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e Our proposed Nystrom-based estimator is given by
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where o is the Hadamard product, K;. ./ sis defined in (1), K k! m =

[km (a:;n "’“77”)} icin’],jen]

e Runtime complexity of O (M n'® o+ Mn/ n), saving if n’ = o (nQ/ 3).
e Code: https://github.com/FlopsKa/nystroem-mhsic/.

/
e R™ " and (-)~ denotes pseudo-inverse.

Main Result

e For bounded kernels (km)M and the effective dimension Ny (A) =

m=1

tr [,uk@)k(IP)) (UrerP) + )\I)_l} , it holds that

‘HSICk(P) — HSIC}, (@n) ‘ — 0p (n_l/ 2) |

assuming that the effective dimension either
e decays polynomially:

max (Nx(A),Nx, (A) <ed™7,

e n' = nt 2= og(n/s),

for some ¢ > 0 and v € (0, 1] (computational savings if v < 1/2), or
e decays exponentially:

max (N (A), N, (A)) <log(1+c/A)/B,

me|M]
n' =+/nlog [ v/n max 1, C, 62
me[M] \ 0 6ag 6aj,

for some ¢ > 0, 8 > 0, ay, ag, bounds on the kernels k, ky, (m € [M]).

e The decay of the effective dimension can be linked to the decay of the
eigenvalues of the covariance operator pqp (P) [1, Proposition 4, 5.
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Example Applications

e Dependency estimation of media annotations (M = 2).
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e Weather causal discovery [3] (M = 3).
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