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Quick Summary

• Faster estimation of Hilbert-Schmidt independence criterion
(HSIC; M = 2: [2], M ≥ 2: [5, 6, 4], validness: [7]).
• Guarantee: same convergence rate as the quadratic time estimator.
• Existing accelerations: M = 2, works efficiently in practice but
without theoretical guarantees [8].
• Experiments on synthetic examples, dependency testing of media
annotations, and causal discovery.

HSIC

• Given X = (Xm)Mm=1 ∼ P on X = ×M
m=1Xm, Xm is equipped with

kernel km and feature map ϕkm
: Xm → Hkm

, HSIC takes the form
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with ⊗M
m=1Pm the product of the marginal distributions Pm, m ∈ [M ] :=

{1, . . . , M}, and µk(P) = EX∼P [ϕk(X)].
• Given an i.i.d. sample of M -tuples of size n
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from P, the V-statistic based estimator takes the form
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with Gram matrices
Kkm,n,n =

[
km

(
xi

m, x
j
m

)]
i,j∈[n]

∈ Rn×n, (1)

and can be computed in O
(
n2) time.

Proposed Nyström-based estimator

• Let P̃n′ =
{(

x̃1
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M

)
, . . . ,
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M

)}
be a subsample of P̂n.

• Our proposed Nyström-based estimator is given by
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where ◦ is the Hadamard product, Kkm,n′,n′ is defined in (1), Kkm,n′,n =[
km

(
x̃i

m, x
j
m

)]
i∈[n′],j∈[n]

∈ Rn′×n, and (·)− denotes pseudo-inverse.

• Runtime complexity of O
(

Mn′3 + Mn′n
)

, saving if n′ = o
(

n2/3
)

.
• Code: https://github.com/FlopsKa/nystroem-mhsic/.

Main Result

• For bounded kernels (km)Mm=1 and the effective dimension NX(λ) =
tr
[
µk⊗k(P) (µk⊗k(P) + λI)−1

]
, it holds that∣∣∣HSICk(P) − HSICk,N
(
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)∣∣∣ = OP

(
n−1/2

)
,

assuming that the effective dimension either
• decays polynomially:

max
m∈[M ]

(
NX(λ), NXm

(λ)
)

≤ cλ−γ, n′ = n1/(2−γ) log(n/δ),

for some c > 0 and γ ∈ (0, 1] (computational savings if γ < 1/2), or
• decays exponentially:
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for some c > 0, β > 0, ak, akm

bounds on the kernels k, km (m ∈ [M ]).
• The decay of the effective dimension can be linked to the decay of the
eigenvalues of the covariance operator µk⊗k (P) [1, Proposition 4, 5].

Example Applications

• Dependency estimation of media annotations (M = 2).
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• Weather causal discovery [3] (M = 3).
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