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Abstract

Kernel techniques are among the most popular and
powerful approaches of data science. Among the
key features that make kernels ubiquitous are (i)
the number of domains they have been designed
for, (ii) the Hilbert structure of the function class
associated to kernels facilitating their statistical
analysis, and (iii) their ability to represent prob-
ability distributions without loss of information.
These properties give rise to the immense success
of Hilbert-Schmidt independence criterion (HSIC)
which is able to capture joint independence of ran-
dom variables under mild conditions, and permits
closed-form estimators with quadratic computa-
tional complexity (w.r.t. the sample size). In order
to alleviate the quadratic computational bottleneck
in large-scale applications, multiple HSIC approxi-
mations have been proposed, however these estima-
tors are restricted to M “ 2 random variables, do
not extend naturally to the M ě 2 case, and lack
theoretical guarantees. In this work, we propose an
alternative Nyström-based HSIC estimator which
handles theM ě 2 case, prove its consistency, and
demonstrate its applicability in multiple contexts,
including synthetic examples, dependency testing
of media annotations, and causal discovery.

1 INTRODUCTION

Kernels methods [Aronszajn, 1950] have been on the fore-
front of data science for more than 20 years [Schölkopf and
Smola, 2002, Steinwart and Christmann, 2008], and they
underpin some of the most powerful and principled machine
learning techniques currently known. The key idea of ker-
nels is to map the data into a (possibly infinite-dimensional)
feature space in which one computes the inner product im-
plicitly by means of a symmetric, positive definite function,

the so-called kernel function.

Kernel functions have been designed for strings [Watkins,
1999, Lodhi et al., 2002] or more generally for sequences
[Király and Oberhauser, 2019], sets [Haussler, 1999, Gärt-
ner et al., 2002], rankings [Jiao and Vert, 2016], fuzzy do-
mains [Guevara et al., 2017] and graphs [Borgwardt et al.,
2020], which renders them broadly applicable. Their ex-
tension to the space of probability measures [Berlinet and
Thomas-Agnan, 2004, Smola et al., 2007] allows to rep-
resent distributions in a reproducing kernel Hilbert space
(RKHS) by the so-called mean embedding. Such embed-
dings form the main building block of maximum mean dis-
crepancy (MMD; Smola et al. [2007], Gretton et al. [2012]),
which quantifies the discrepancy of two distributions as the
RKHS distance of their respective mean embeddings. MMD
is (i) a semi-metric on probability measures, (ii) a metric iff.
the kernel is characteristic [Fukumizu et al., 2008, Sriperum-
budur et al., 2010], (iii) an instance of integral probability
metrics (IPM; Müller [1997], Zolotarev [1983]) when the
underlying function class in the IPM is chosen to be the unit
ball in an RKHS.

Measuring the discrepancy of a joint distribution to the
product of its marginals by MMD gives rise to the Hilbert-
Schmidt independence criterion (HSIC; Gretton et al.
[2005]). HSIC was shown to be equivalent [Sejdinovic et al.,
2013b] to distance covariance [Székely et al., 2007, Székely
and Rizzo, 2009, Lyons, 2013]; Sheng and Sriperumbudur
[2023] have recently proved a similar result for the condi-
tional case. HSIC is known to capture the independence of
M “ 2 random variables with characteristic pkmq2m“1 ker-
nels (on the respective domains) as proved by Lyons [2013];
for more than two components (M ą 2; Quadrianto et al.
[2009], Sejdinovic et al. [2013a], Pfister et al. [2018]) univer-
sality [Steinwart, 2001, Micchelli et al., 2006] of pkmqMm“1-s
is sufficient [Szabó and Sriperumbudur, 2018]. HSIC has
been deployed successfully in a wide range of domains in-
cluding independence testing [Gretton et al., 2008, Pfister
et al., 2018, Albert et al., 2022], feature selection [Camps-
Valls et al., 2010, Song et al., 2012, Wang et al., 2022] with
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applications in biomarker detection [Climente-González
et al., 2019] and wind power prediction [Bouche et al.,
2023], clustering [Song et al., 2007, Climente-González
et al., 2019], and causal discovery [Mooij et al., 2016, Pfis-
ter et al., 2018, Chakraborty and Zhang, 2019, Schölkopf
et al., 2021].

Various estimators for HSIC and other dependence mea-
sures exist in the literature, out of which we summarize
the most closely related ones to our work in Table 1. The
classical V-statistic based HSIC estimator (V-HSIC; Gretton
et al. [2005], Quadrianto et al. [2009], Pfister et al. [2018])
is powerful but its runtime increases quadratically with the
number of samples, which limits it applicability in large-
scale settings. To tackle this severe computational bottle-
neck, approximations of HSIC (N-HSIC, RFF-HSIC) have
been proposed [Zhang et al., 2018], relying on the Nyström
[Williams and Seeger, 2001] and the random Fourier fea-
ture (RFF; Rahimi and Recht [2007]) method, respectively.
However, these estimators (i) are limited to two compo-
nents, (ii) their extension to more than two components is
not straightforward, and (iii) they lack theoretical guaran-
tees. The RFF-based approach is further restricted to finite-
dimensional Euclidean domains and to translation-invariant
kernels. The normalized finite set independence criterion
(NFSIC; Jitkrittum et al. [2017]) replaces the RKHS norm
of HSIC with an L2 one which allows the construction of
linear-time estimators. However, NFSIC is also limited to
two components, requires Rd-valued input, and analytic
kernels [Chwialkowski et al., 2015]. Novel complemen-
tary approaches are the kernel partial correlation coefficient
(KPCC; Huang et al. 2022), and tests basing on incomplete
U-statistics [Schrab et al., 2022]. One drawback of KPCC
is its cubic runtime complexity w.r.t. the sample size when
applied to kernel-enriched domains. Schrab et al. [2022]’s
approach can run in linear time, but it is limited to M “ 2
components. We note that all approaches require choosing
an appropriate kernel: Here, one can optimize over various
parametric families of kernels for increasing a proxy of test
power in case of MMD [Jitkrittum et al., 2016, Liu et al.,
2020], and in case of HSIC [Jitkrittum et al., 2017]. One
can also design (almost) minimax-optimal MMD-based two-
sample tests using spectral regularization [Hagrass et al.,
2022].

The restriction of existing HSIC approximations to two
components is a severe limitation in recent applications like
causal discovery which require independence tests capable
of handling more than two components. Furthermore, the
emergence of large-scale data sets necessitates algorithms
that scale well in the sample size. To alleviate these bottle-
necks, we make the following contributions.

1. We propose Nyström M -HSIC, an efficient HSIC esti-
mator, which can handle more than two components and
has runtime O

´
Mn13 `Mn1n

¯
, where n denotes the

number of samples, n1 ! n stands for the number of Nys-
tröm points, and M is the number of random variables
whose independence is measured.

2. We provide theoretical guarantees for Nyström M -
HSIC: we prove that our estimator converges with rate
O
`
n´1{2˘ for n1 „ ?n, which matches the convergence

of the quadratic-time estimator.

3. We perform an extensive suite of experiments to demon-
strate the efficiency of Nyström M -HSIC. These appli-
cations include dependency testing of media annotations
and causal discovery. In the former, we achieve similar
runtime and power as existing HSIC approximations. The
latter requires testing joint independence of more than
two components, which is beyond the capabilities of ex-
isting HSIC accelerations. Here, the proposed algorithm
achieves the same performance as the quadratic-time
HSIC estimator V-HSIC with a significantly reduced run-
time.

The paper is structured as follows. Our notations are in-
troduced in Section 2. The existing Nyström-based HSIC
approximation for two components is reviewed in Section 3.
Our proposed method, which is capable of handling M ě 2
components, is presented in Section 4 together with its theo-
retical guarantees. In Section 5 we demonstrate the applica-
bility of Nyström M -HSIC. All the proofs of our results are
available in the supplementary material.

2 NOTATIONS

This section is dedicated to definitions and to the introduc-
tion of our target quantity Hilbert-Schmidt independence
criterion (HSIC). In particular, we introduce the notations
rM s, xv,wy, }v}2, ˝mPrMsAm, trpAq, A´1, A´, AT,
}A}F, 1d, Id, span, M`

1 pX q, Hk, µk, MMDk, bMm“1km,
bMm“1Pm, HSICbM

m“1km
, CX ,A´1, }A}op, trpAq, NXpλq,

OP prnq.
For a positive integer M , rM s :“ t1, . . . ,Mu. The
Euclidean inner product of vectors v,w P Rd is
denoted by xv,wy; the Euclidean norm is }v}2 :“axv,vy. The Hadamard product of matrices Am P
Rd1ˆd2 of equal size (m P rM s) is ˝mPrMsAm :“”ś

mPrMspAmqi,j
ı
iPrd1s,jPrd2s

. Matrix multiplication takes

precendence over the Hadamard one. For a matrix A P
Rdˆd, trpAq :“ ř

iPrdsAi,i denotes its trace, A´1 is
its inverse (assuming that A is non-singular), and A´
is its Moore–Penrose inverse. The transpose of a matrix
A P Rd1ˆd2 is denoted by AT. The Frobenius norm of
a matrix A P Rd1ˆd2 is }A}F :“

bř
iPrd1s,jPrd2spAi,jq2.

The d-dimensional vector of ones is 1d. The d ˆ d-sized
identity matrix is denoted by Id. For a set S in a vector
space, spanpSq denotes the linear hull of S. Let pX , τX q



Table 1: Comparison of kernel independence measures: n – number of samples, M – number of components, n1 – number
of Nyström samples, s – number of random Fourier features, d – data dimensionality.

Independence Measure Runtime Complexity M Domain Admissible Kernels

V-HSIC [Pfister et al., 2018] O
`
Mn2

˘
M ě 2 any universal

NFSIC [Jitkrittum et al., 2017] O pnq M “ 2 Rd analytic, characteristic

N-HSIC [Zhang et al., 2018] O
´
n13 ` nn12

¯
M “ 2 any characteristic

RFF-HSIC [Zhang et al., 2018] O
`
s2n

˘
M “ 2 Rd translation-invariant, characteristic

KPCC [Huang et al., 2022] O
`
n3
˘

M “ 2 any characteristic

Nyström M -HSIC (N-MHSIC) O
´
Mn13 `Mn1n

¯
M ě 2 any universal

be a topological space, and BpτX q the Borel sigma-algebra
induced by the topology τX . All probability measures in
the manuscript are meant with respect to the measurable
space pX ,BpτX qq, and they are denoted by M`

1 pX q. The
RKHS Hk on X associated with a kernel k : X ˆ X Ñ R
is the Hilbert space of functions h : X Ñ R such that
kp¨, xq P Hk and xh, kp¨, xqyHk

“ hpxq for all x P X and
h P Hk.1 Kernels are assumed to be bounded (in other
words, there exists B P R such that supx,x1PX kpx, x1q ď
B) and measurable, and Hk is assumed to be separable
throughout the paper.2 The function defined by φkpxq :“
kp¨, xq is the canonical feature map; with this feature map
kpx, x1q “ xkp¨, xq, kp¨, x1qyHk

“ xφkpxq, φkpx1qyHk
for

all x, x1 P X . A kernel k : Rd ˆ Rd Ñ R is called
translation-invariant if there exists a function κ : Rd Ñ R
such that kpx,x1q “ κpx ´ x1q for all x,x1 P Rd. The
mean embedding µk of a probability measure P PM`

1 pX q
is µkpPq :“

ş
X φkpxqdPpxq, where the integral is meant

in Bochner’s sense. The resulting (semi-)metric is called
maximum mean discrepancy (MMD):

MMDkpP,Qq :“ }µkpPq ´ µkpQq}Hk
,

for P,Q PM`
1 pX q. The injectivity of the mean embedding

µk is equivalent to MMDk being a metric; in this case the
kernel k is called characteristic. Let X “ pXmqMm“1 denote
a random variable with distribution P P M`

1 pX q on the
product space X “ ˆMm“1Xm, where Xm is enriched with
kernel km : Xm ˆ Xm Ñ R. The distribution of the m-
th marginal Xm of X is denoted by Pm P M`

1 pXmq; the
product of these M marginals is bMm“1Pm PM`

1 pX q. The
tensor product of the kernels pkmqMm“1

bMm“1km
`pxmqMm“1, px1mqMm“1

˘
:“

ź

mPrMs
kmpxm, x1mq,

with xm, x1m P Xm (m P rM s), is also a kernel; we will
use the shorthand k “ bMm“1km. The associated RKHS

1kp¨, xq stands for x1 P X ÞÑ kpx1, xq P R with x P X fixed.
2The separability of Hk can be guaranteed on a separable

topological space X by taking a continuous kernel k [Steinwart
and Christmann, 2008, Lemma 4.33].

has a simple structure Hk “ bMm“1Hkm [Berlinet and
Thomas-Agnan, 2004] with the r.h.s. denoting the tensor
product of the RKHSs pHkmqMm“1. Indeed, for hm P Hkm ,
the multi-linear operator bMm“1hm P bMm“1Hkm acts as
bMm“1hmpv1, . . . , vM q “

ś
mPrMs xhm, vmyHkm

, where
hm, vm P Hkm . The space bMm“1Hkm is the closure of the
linear combination of such bMm“1hm-s:

bMm“1Hkm “ Ęspan
`bMm“1hm : hm P Hkm ,m P rM s˘ ,

where the closure is meant w.r.t. to the (linear extension of
the) inner product defined as

@bMm“1am,bMm“1bm
D
bM

m“1Hkm
:“

“
ź

mPrMs
xam, bmyHkm

, am, bm P Hkm . (1)

Specifically, (1) implies that

››bMm“1am
››bM

m“1Hkm
“

ź

mPrMs
}am}Hkm

. (2)

One can define an independence measure, the so-called
Hilbert-Schmidt independence criterion based on k as

HSICkpPq :“ MMDk
`
P,bMm“1Pm

˘ “ }CX}Hk
, (3)

where CX :“ µkpPq´µk
`bMm“1Pm

˘
is the centered cross-

covariance operator.

Let A : Hk Ñ Hk be a bounded linear operator. Its in-
verse (provided that it exists) A´1 : Hk Ñ Hk is also
bounded linear. The operator norm of A is defined as
}A}op :“ sup}h}Hk

“1 }Ah}Hk
. As Hk is separable, it has a

countable orthonormal basis pejqjPJ . A is called trace-class

if
ř
jPJ

A
pA˚Aq 1

2 ej , ej

E
Hk

ă 8 where p¨q˚ denotes the

adjoint, and in this case trpAq :“ ř
jPJ xAej , ejyHk

ă 8
is called the trace of A. For P P M`

1 pX q, kernel k :
X ˆ X Ñ R and λ ą 0, the uncentered covariance op-
erator is µkbkpPq :“

ş
X kp¨, xq b kp¨, xqdPpxq and its reg-

ularized variant is µkbk,λpPq :“ µkbkpPq ` λI , respec-
tively, where I denotes the identity operator. Let Nxpλq “



A
φkpxq, µ´1

kbk,λpPqφkpxq
E
Hk

. The effective dimension of

X „ P is defined as NXpλq :“ Ex„P rNxpλqs “
tr
´
µkbkpPqµ´1

kbk,λpPq
¯

. For a sequence of rn ą 0-s and
a sequence of real-valued random variables Xn, Xn “
OPprnq denotes that Xn

rn
is bounded in probability.

3 EXISTING HSIC ESTIMATORS

We recall the existing HSIC estimator V-HSIC in Sec-
tion 3.1, and its Nyström approximation for two compo-
nents in Section 3.2. We present our proposed Nyström
approximation for more than two components in Section 4.

3.1 CLASSICAL HSIC ESTIMATOR (V-HSIC)

Given an i.i.d. sample of M -tuples of size n

P̂n :“  `
x11, . . . , x

1
M

˘
, . . . , pxn1 , . . . , xnM q

( Ă X (4)

drawn from P, the corresponding empirical estimate of the
squared HSIC, obtained by replacing the population means
with the sample means, gives rise to the V-statistic based
estimator

0 ď HSIC2
k

´
P̂n

¯
:“ 1

n2
1Tn

`˝mPrMsKkm

˘
1n (5)

` 1

n2M

ź

mPrMs
1TnKkm1n ´ 2

nM`1
1Tn

`˝mPrMsKkm1n
˘

with Gram matrices

Kkm “
“
km

`
xim, x

j
m

˘‰
i,jPrns P Rnˆn, (6)

which can be computed in Opn2Mq.3 This prohibitive run-
time inspired the development of HSIC approximations
[Zhang et al., 2018] using the Nyström method and random
Fourier features. We review the Nyström-based construction
in Section 3.2 and explain why the technique is restricted
to M “ 2 components, before presenting our alternative ap-
proximation scheme of HSIC in Section 4 which is capable
of handling M ě 2 components.

3.2 NYSTRÖM METHOD

In this section, we recall the existing Nyström approxima-
tion, which can handle M “ 2 components.

The expression (5) can be rewritten [Gretton et al., 2005]
for M “ 2 components as

HSIC2
k

´
P̂n

¯
“ 1

n2
tr pHKk1HKk2q , (7)

3HSIC2
kpP̂nq denotes the application of HSIC2

k to the empiri-
cal measure P̂n. HSIC2

k,N0
pP̂nq and HSIC2

k,NpP̂nq indicate depen-
dence on P̂n. Similarly, µ`pQ̂nq stands for application, µ`pQ̃n1q,
µkmpP̃m,n1q and µkpP̃n1q indicate dependence on the argument.

with the centering matrix H “ In ´ 1
n1n1

T
n P Rnˆn,

Gram matrices Kk1 , Kk2 defined in (6), and sample P̂n :“ px11, x12q, . . . , pxn1 , xn2 q
(

as in (4) with M “ 2. The naive
computation of (7) costs O

`
n3
˘
. However, noticing that

trpATBq “ ř
i,jPrnsAi,jBi,j , the computational complex-

ity reduces to O
`
n2
˘
. The quadratic complexity can be

reduced by the Nyström approximation3 [Zhang et al., 2018]

HSIC2
k,N0

´
P̂n

¯
“ 1

n2
tr
´
HKNys

k1
HKNys

k2

¯

p˚q“ 1

n2

››››
´
HφNys

k1

¯T
HφNys

k2

››››
2

F
,

(8)

which we detail in the following. The Nyström approxima-
tion relies on a subsample of size n1 ď n of P̂n, which
we denote by P̃n1 :“

!`
x̃11, x̃

1
2

˘
, . . . ,

`
x̃n

1
1 , x̃

n1
2

˘)
; the tilde

indicates a relabeling. The subsample allows to define three
matrices

Kkm,n1n1 “
“
km

`
x̃im, x̃

j
m

˘‰
i,jPrn1s P Rn

1ˆn1 ,

Kkm,nn “ Kkm P Rnˆn,
Kkm,n1n “

“
kmpx̃im, xjmq

‰
iPrn1s,jPrns P Rn

1ˆn,

(9)

where m P r2s and Kkm is defined in (6), and let
Kkm,nn1 “ KT

km,n1n P Rnˆn1 . The matrices KNys
km
pm P

r2sq as used in (8) are

KNys
km

:“ Kkm,nn1K
´1
km,n1n1Kkm,n1n

“ Kkm,nn1K
´ 1

2

km,n1n1looooooooomooooooooon
“:φNys

km
PRnˆn1

`
Kkm,nn1K

´ 1
2

km,n1n1looooooooomooooooooon
φNys
km

˘T P Rnˆn,

provided that the inverse K´1
km,n1n1 exists. In (8) the r.h.s.

of p˚q has a computational complexity of Opn13 ` nn12q,4
which is smaller than O

`
n2
˘

of (7), provided that n1 ă ?n;
this speeds up the computation. p˚q relies on the cyclic
invariance property of the trace, and the idempotence of H
(in other words, HH “ H), limiting the above derivation to
M “ 2 components; the approach does not extend naturally
to the case of M ą 2.

4 PROPOSED HSIC ESTIMATOR

We now elaborate the proposed Nyström HSIC approxima-
tion for M ě 2 components.

Recall that the centered cross-covariance operator takes the
form

CX “ µkpPq ´ µk
`bMm“1Pm

˘

“ µkpPq ´ bMm“1µkm pPmq . (10)

4This follows from the complexity of Opn13q of inverting an
n1 ˆ n1 matrix and the complexity of multiplying both feature
representations [Zhang et al., 2018].



There areM`1 expectations in this expression; we estimate
these mean embeddings separately. This conceptually sim-
ple construction, is to the best of our knowledge, the first that
handlesM ě 2 components, and it allows to leverage recent
bounds on mean estimators (Lemma 4.1). We first detail the
general Nyström method for approximating expectationsş
Y φ`pyqdQpyq associated to a kernel ` : Y ˆ Y Ñ R and

probability distribution Q PM`
1 pYq. One can then choose

pY, `,Qq “ pX , k,Pq, and
pY, `,Qq “ pXm, km,Pmq, m P rM s, (11)

to achieve our goal.

Let Q̃n1 “
!
ỹ1, . . . , ỹn

1)
be a subsample (with replace-

ment) of Q̂n “
 
y1, . . . , yn

( i.i.d.„ Q referred to as Nyström
points; the tilde again indicates relabeling. The usual esti-
mator of the mean embedding replaces the population mean
with its empirical counterpart over n samples3

µ`pQq “
ż

Y
φ`pyqdQpyq « 1

n

ÿ

iPrns
φ`pyiq “ µ`pQ̂nq.

Instead, the Nyström approximation uses a weighted sum
with weights αi P R (i P rn1s): given n1 Nyström points,
the estimator takes the form3

µ`pQq «
ÿ

iPrn1s
αiφ`pỹiq “ µ`

´
Q̃n1

¯
P HNys

` ,

where HNys
` :“ span

`
φ`
`
ỹi
˘
: i P rn1s˘ Ă H`. The coef-

ficients α` “ pα1
` , . . . , α

n1
` qT P Rn1 are obtained by the

minimum norm solution of

min
α`PRn1

››››››
µ`

´
Q̂n

¯
´

ÿ

iPrn1s
αiφ`

`
ỹi
˘
››››››

2

H`

. (12)

The following lemma describes the solution of (12).

Lemma 4.1 (Nyström mean embedding, Chatalic et al.
[2022]). For a kernel ` with corresponding feature map
φ`, an i.i.d. sample Q̂n of distribution Q, and a subsample
Q̃n1 of Q̂n, the Nyström estimate of µ`pQq is given by

µ`

´
Q̃n1

¯
“

ÿ

iPrn1s
αi`φ`

`
ỹi
˘
,

α` “ 1

n
pK`,n1n1q´K`,n1n1n, (13)

with Gram matrix K`,n1n1 “
“
`px̃i, x̃jq‰

i,jPrn1s P Rn1ˆn1 ,
and K`,n1n “

“
`px̃i, xjq‰

iPrn1s,jPrns P Rn
1ˆn.

Let

P̃n1 “
!´
x̃11, . . . , x̃

1
M

¯
, . . . ,

´
x̃n

1
1 , . . . , x̃

n1
M

¯)
(14)

be a subsample (with replacement) of P̂n “ `
x11, . . . , x

1
M

˘
, . . . , pxn1 , . . . , xnM q

(
defined in (4),

and

P̃m,n1 “
!
x̃1m, . . . , x̃

n1
m

)
(15)

be the corresponding subsample of the m-th marginal (m P
rM s). Using our choice (11) with Lemma 4.1, the estimators
for the embeddings of marginal distributions take the form3

µkm

´
P̃m,n1

¯
“

ÿ

iPrn1s
αikmφkm

`
x̃im

˘
,

αkm “
1

n
pKkm,n1n1q´Kkm,n1n1n, (16)

and the estimator of the mean embedding of the joint distri-
bution is3

µk

´
P̃n1

¯
“

ÿ

iPrn1s
αik bMm“1 φkm

`
x̃im

˘
,

αk “ 1

n
pKk,n1n1q´ pKk,n1nq1n

p˚q“ 1

n

pcqhkkkkkkkkkkkkikkkkkkkkkkkkj
´
˝mPrMsKkm,n1n1looooooooomooooooooon

paq

¯´ˆ

´
˝mPrMsKkm,n1nloooooooomoooooooon

pbq

¯
1n, (17)

where p˚q holds as for the Gram matrix Kk,n1n1 associated
with the product kernel k “ bmPrMskm one has

Kk,n1n1 “
”
k
´
pxi1, . . . , xiM q, pxj1, . . . , xjM q

¯ı
i,jPrn1s

“
»
– ź

mPrMs
kmpxim, xjmq

fi
fl
i,jPrn1s
“ ˝mPrMsKkm,n1n1 ,

and similarly Kk,n1n “ ˝mPrMsKkm,n1n, with Kkm,n1n1

and Kkm,n1n defined in (9).

Combining the M ` 1 Nyström estimators in (16) and in
(17) gives rise to the overall Nyström HSIC estimator, which
is elaborated in the following lemma.

Lemma 4.2 (Computation of Nyström M -HSIC). The Nys-
tröm estimator for HSIC can be expressed as3

HSIC2
k,N

´
P̂n

¯
“ αT

k

`˝mPrMsKkm,n1n1
˘
αk (18)

`
ź

mPrMs
αT
kmKkm,n1n1αkm´ 2αT

k

`˝mPrMsKkm,n1n1αkm
˘
,

with αkm and αk defined in (16) and (17), respectively,
Kkm,n1n1 is defined in (9), and N in the subscript of the
estimator refers to Nyström. Note that (18) depends on P̂n
as one must solve (12).



Remark 1.

• Uniform weights, no subsampling. The estimator (18)
gives back (5) when αk :“ αkm :“ 1

n1n for allm P rM s,
and when there is no subsampling applied.

• Runtime complexity. In order to determine the compu-
tational complexity of (18) one has to find that of (17);
that of (16) follows by choosing M “ 1 in (17). paq
and pbq in (17) are Hadamard products; hence their com-

putational complexity is O
´
Mn12

¯
and O pMnn1q. pcq

in (17) is the Moore-Penrose inverse of an n1 ˆ n1 ma-
trix; thus its complexity is O

´
n13

¯
. Hence, the compu-

tation of αk costs O
`
Mn12 ` n13 ` Mn1n

˘
, and that

of pαkmqMm“1 is O
`
n12 ` n13 ` n1n

˘
for each m P

rM s. In (18) each term can be computed in O
´
Mn12

¯
.

Overall the Nyström M -HSIC estimator has complexity
O
`
Mn12 `Mn13 `Mn1n

˘ “ O
`
Mn13 `Mn1n

˘
.

• Difference compared to the estimator by Zhang et al.
[2018]. For M “ 2, (18) reduces to

HSIC2
k,N

´
P̂n

¯
“ αT

k

`˝iPr2sKki,n1n1
˘
αk (19)

`
ź

iPr2s
αTkiKki,n1n1αki ´ 2αT

k

`˝iPr2sKki,n1n1αki
˘
.

Using the equivalence of (5) and (7) in case M “ 2 gives

tr pHKk1HKk2q “
1

n2
1Tn pKk1 ˝Kk2q1n

` 1

n4

ź

iPr2s
1TnKki1n ´

2

n3
1Tn pKk11n ˝Kk21nq ,

hence (8) becomes

HSIC2
k,N0

´
P̂n

¯
“ 1

n2
1Tn

´
KNys
k1
˝KNys

k2

¯
1n (20)

` 1

n4

ź

iPr2s
1TnK

Nys
ki

1n ´ 2

n3
1Tn

´
KNys
k1

1n ˝KNys
k2

1n

¯
.

The estimators (19) and (20) are identical if αk “ αkm “
1
n1n for all m P rM s and when there is no subsampling;
in the general case they do not coincide. In (8) the domi-
nant term in the complexity is pn1q2 n (since n1 ă n), this
reduces to n1n in our proposed estimator (18).

Key to showing the consistency of the proposed Nyström
M -HSIC estimator (18) (Proposition 4.1) is our next lemma,
which describes how the Nyström approximation error of
the mean embeddings of the components (dkm below) can
be propagated through tensor products.

Lemma 4.3 (Error propagation on tensor products). Let
X “ pXmqMm“1 P X “ ˆMm“1Xm, km : Xm ˆ
Xm Ñ R bounded kernels (Dakm P p0,8q such that
supxmPXm

a
kmpxm, xmq ď akm , m P rM s), k “

bMm“1km, Hk the RKHS associated to k, X „ P P
M`

1 pX q, Pm the m-th marginal of P (m P rM s), n1 ď n,
and P̃m,n1 defined according to (15). Then

›››bMm“1µkm pPmq ´ bMm“1µkm

´
P̃m,n1

¯›››
Hk

ď
ď

ź

mPrMs
pakm ` dkmq ´

ź

mPrMs
akm ,

where dkm “
›››µkm pPmq ´ µkm

´
P̃m,n1

¯›››
Hkm

.

Our resulting Nyström M -HSIC performance guarantee is
as follows.

Proposition 4.1 (Error bound for Nyström M -HSIC). Let
X “ pXmqMm“1 P X “ ˆMm“1Xm, X „ P P M`

1 pX q,
pXmqmPrMs locally compact, second-countable topological
spaces, km : Xm ˆ Xm Ñ R bounded kernels, i.e., Dakm P
p0,8q such that supxmPXm

a
kmpxm, xmq ď akm for all

m P rM s, k “ bmPrMskm, ak “śM
m“1 akm , φkmpxmq “

kmp¨, xmq for all xm P Xm, φk “ bMm“1φkm , Ck “
E rφkpXq b φkpXqs, Ckm “ E rφkmpXmq b φkmpXmqs,
the number of Nyström points n1 ď n, P̂n defined according
to (4). Then, for any δ P

´
0, 1

M`1

¯

ˇ̌
ˇHSICkpPq ´HSICk,N

´
P̂n

¯ˇ̌
ˇ ď ck,1?

nloomoon
tk,1

` ck,2
n1loomoon
tk,2

`

` ck,3
a
logpn1{δq
n1

d
NX

ˆ
12a2k logpn1{δq

n1

˙

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
tk,3

`

`
ź

mPrMs

«
akm `

ckm,1?
nloomoon

tkm,1

` ckm,2
n1loomoon

tkm,2

`

` ckm,3
a
logpn1{δq
n1

gffeNXm

˜
12a2km logpn1{δq

n1

¸

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
tkm,3

ff

´
ź

mPrMs
akm

holds with probability at least 1´ pM ` 1qδ, provided that

n1 ě max
mPrMs

´
67, 12a2k }Ck}´1

op , 12a
2
km }Ckm}´1

op

¯
log

n1

δ
,

where ck,1 “ 2ak
a
2 logp6{δq, ck,2 “ 4

?
3ak logp12{δq,

ck,3 “ 12
a
3 logp12{δqak, ckm,1 “ 2akm

a
2 logp6{δq,

ckm,2 “ 4
?
3akm logp12{δq, ckm,3 “ 12

a
3 logp12{δqakm

for m P rM s.

As a baseline, to interpret the result (see the second bullet
point in Remark 2), one could consider the V-statistic based



HSIC estimator (5) for M ě 2, which according to our
following lemma has a convergence rate of OP

´
1?
n

¯
.

Lemma 4.4 (Deviation bound for V-statistic based HSIC
estimator). Let HSICkpP̂nq be as in (5) on a metric space
X “ ˆMm“1Xm, and HSICk pPq ą 0. Then

ˇ̌
ˇHSICk pPq ´HSICk

´
P̂n

¯ˇ̌
ˇ “ OP

ˆ
1?
n

˙
.

Remark 2.

• From the terms tk,1, tk,2, tkm,1, tkm,2,m P rM s it follows
that for n1 ă ?n the respective second term dominates,
thus increasing the error; for n1 ą ?

n the respective
first term dominates and the computational complexity
increases. The effective dimension ptk,3, tkm,3q controls
the trade off between the two terms and can be related
[Chatalic et al., 2022] to the decay of the eigenvalues of
the respective covariance operator. A convergence rate of
n´1{2 for the sums tk,1` tk,2` tk,3 and tkm,1` tkm,2`
tkm,3 can be achieved if
– maxmPrMs pNXpλq,NXm

pλqq ď cλ´γ for some c ą
0 and γ P p0, 1s with n1 “ n1{p2´γq logpn{δq, or

– maxmPrMs pNXpλq,NXm
pλqq ď logp1 ` c{λq{β

for some c ą 0, β ą 0, and n1 “
?
n log

ˆ?
n max
mPrMs

´
1
δ ,

c
6a2k

, c
6a2km

¯˙
.

This rate of convergence propagates through the product.

• Lemma 4.4 establishes that the V-statistic based estimator
of HSIC converges with rate n´1{2. Recalling the last line
of Table 1, setting n1 “ o

`
n2{3

˘
, the proposed estima-

tor yields an asymptotic speedup over V-HSIC. Hence,
setting n1 “ Õ p?nq allows to obtain the same rate
of convergence while decreasing runtime. Assumption
HSICk pPq ą 0 in Lemma 4.4 protects one from attaining

a convergence rate of n´1 of HSIC2
k

´
P̂n

¯
.

5 EXPERIMENTS

In this section, we demonstrate the efficiency of the pro-
posed method (N-MHSIC) against the baselines NFSIC,
RFF-HSIC, N-HSIC and the quadratic-time V-statistic based
HSIC estimator (V-HSIC) in the context of independence
testing. Hence, the null hypothesis H0 is that the joint distri-
bution factorizes to the product of the marginals, the alter-
native H1 is that this is not the case. The experiments study
both synthetic (Section 5.1) and real-world (Section 5.2)
examples, in terms of power and runtime.5

We use the Gaussian kernel

kmpxm,x1mq “ exp
´
´γkm

››xm ´ x1m
››2
2

¯

5The code of our experiments is available at https://
github.com/FlopsKa/nystroem-mhsic.
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Figure 1: Estimation accuracy for M “ 2 components; the
theoretical HSIC value is zero.

for all experiments, with γkm chosen according to the me-
dian heuristic. For a fair comparison of the test power, we
approximate the null distribution of each test statistic by the
permutation approach with 250 samples. We then perform a
one-sided test with an acceptance region of 5% (α “ 0.05),
which we repeat, for all power experiments, on 100 inde-
pendent draws of the data; the runtime results include these.
We set each algorithm’s parameters as recommended by the
respective authors: For NFSIC, we set the number of test lo-
cations J “ 5; the number of Fourier features (RFF-HSIC)
and Nyström samples (N-HSIC) is set to

?
n. The num-

ber of Nyström samples of N-MHSIC is indicated within
the experiment description. The opaque area in the figures
indicates the 0.95-quantile obtained over 5 runs. All experi-
ments were performed on a PC with Ubuntu 20.04, 124GB
RAM, and 32 cores with 2GHz each.

5.1 SYNTHETIC DATA

We examine three toy problems in the following, illustrating
runtime and statistical power.

Comparison of HSIC approximations under H0. First,
for M “ 2 components, we compare our proposed method
to the existing accelerated HSIC estimators (N-HSIC, RFF-
HSIC) on independent data to assess convergence w.r.t. run-
time. Specifically, we set X1, X2

i.i.d.„ N p0, 1q. The theoreti-
cal value of HSIC is thus zero. Figure 1 shows the estimates
for sample sizes from 100 to 1000; the number of Nyström
samples for N-MHSIC is set to n1 “ 2

?
n. All approaches

converge to zero, with N-MHSIC converging a bit slower
than the exisiting HSIC approximations. However, we note
that the gap is on the order of 10´3 so it is close to the theo-
retical value also for small sample sizes. The runtime scales
as predicted by the complexity analysis, with the proposed
approach running faster than both N-HSIC and RFF-HSIC
starting from n “ 500 samples.

Dependent Data (H1 holds). To evaluate the statistical
power on M “ 2 components, we set X1 „ N p0, 1q, X2 “
X1 ` ε, and ε „ N p0, 1q, with n1 set as before. Figure 2
shows that N-MHSIC achieves a power of one for n «
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Figure 2: Power on dependent data. Runtime on log scale.

100 and that it is slightly worse than the existing HSIC
approximations for small sample sizes. V-HSIC has the
highest power but also the highest runtime. Even though
NFSIC has linear runtime complexity it is slower than all
other statistics on small sample sizes.

Causal Discovery. The experiments until now considered
M “ 2 components. However, N-MHSIC allows for han-
dling M ě 2 components and thus can estimate the directed
acyclic graph (DAG) governing causality if one assumes an
additive noise model.

Specifically, we sample from the structural equations Xi “ř
jPPAi

f i,j pXjq ` εi for i P rM s, of a randomly selected
fully connected DAG with four nodes (M “ 4), of which
there are 24. In the equation, PAi denotes the parents of i in
the associated DAG, and the εi are normally distributed and
jointly independent, with a variance sampled independently
from the uniform distribution U

`
1,
?
2
˘
.

To now test whether a particular DAG fits the data, Pfister
et al. [2018] propose to use generalized additive model
regression to find the residuals when regressing each node
onto all its parents and to reject the DAG if the residuals are
not jointly independent. If these are independent, we accept
the causal structure. In this application, one is only interested
in the relative p-values when performing the procedure for
all possible DAGs with the correct number of nodes.

V-HSIC has the best performance in [Pfister et al., 2018], so
we only compare against V-HSIC; it is also the only other
approach which allows testing joint independence of more
than two components. Figure 3 shows how often N-MHSIC
and V-HSIC identify the correct DAG in 100 samples. V-
HSIC has higher power than N-MHSIC and more often
identifies the correct DAG for small sample sizes. However,
as the r.h.s. of Figure 3 shows, the proposed algorithm runs
even for n1 “ 8

?
n and n “ 1500 twice as fast as V-

HSIC while producing the same result quality. Due to their
different runtime complexities, the gap in runtime widens
further with increasing sample size.

5.2 REAL-WORLD DATA

This section is dedicated to benchmarks on real-world data.
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Figure 3: Ratio of correctly identified DAGs with 4 nodes.
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Figure 4: Test power vs. runtime on the Million Song Data.

Million Song Data. The Million Song Data [Bertin-
Mahieux et al., 2011] contains approximately 500,000 songs.
Each has 90 features (X) together with its year of release,
which ranges from 1922 to 2011 (Y ). The algorithms must
detect the dependence between the features and the year
of release. To approximate the power, we draw 100 inde-
pendent samples of the whole data set. Figure 4 shows the
results, for level α “ 0.01; the different ranges of n high-
light the asymptotic runtime gains. In contrast to a similar
experiment of Jitkrittum et al. [2017], we use a permutation
approach for all two-sample tests and increase the number
of Nyström samples (random Fourier features) as a function
of n, obtaining higher power throughout. The problem is
sufficiently challenging, so that we set the number of Nys-
tröm samples to 8

?
n for N-MHSIC. V-HSIC and NFSIC

achieve maximum power from n “ 500. N-MHSIC features
similar runtime and power as the existing HSIC approxi-
mations N-HSIC and RFF-HSIC but can handle more than
two components. The runtime plot illustrates that the lower
asymptotic complexity of N-MHSIC compared to V-HSIC
also holds in practice.

Weather Causal Discovery. Here, we aim to infer the
correct causality DAG from real-world data, namely the data
set of Mooij et al. [2016] which contains 349 measurements
consisting of altitude, temperature and sunshine. The goal
is to infer the most plausible DAG with three nodes pd “ 3q
out of the 25 possible DAGs (33´2 “ 25; two graphs have a
cycle). We assume the structural equations discussed before.
Figure 5 shows the p-values with the estimated DAG (with
index 25) having the largest p-value. Again, we compare our
results to V-HSIC and find that both successfully identify
the most plausible DAG [Pfister et al., 2018].
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p-value (right). The p-values agree on DAGs 1 to 24.

These experiments demonstrate the efficiency of the pro-
posed Nyström M -HSIC method.
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A APPENDIX

Section A.1 contains two external theorems and lemmas that we use. Section A.2 is about our proofs.

A.1 EXTERNAL THEOREMS AND LEMMAS

In this section two theorems and lemmas are recalled for self-completeness, Theorem A.1 is about bounding the error
of Nyström mean embeddings [Chatalic et al., 2022, Theorem 4.1], Theorem A.2 is a well-known result [Serfling, 1980,
Section 5.6, Theorem A] for bounding the deviation of U-statistics. Lemma A.1 is about connection between U- and
V-statistics. Lemma A.2 recalls Markov’s inequality.

Theorem A.1 (Bound on mean embeddings). Let X be a locally compact second-countable topological space, X a random
variable supported on X with Borel probability measure P, and let Hk be a RKHS on X with kernel k : X ˆ X Ñ R,
and feature map φk. Assume that there exists a constant K P p0,8q such that supxPX

a
kpx, xq ď K. Let Ck “

E rφkpXq b φkpXqs. Furthermore, assume that the data points P̂n “ tx1, . . . , xnu are drawn i.i.d. from the distribution P
and that n1 ď n subsamples P̃n1 “ tx̃1, . . . , x̃n1u are drawn uniformly with replacement from the dataset P̂n. Then for any
δ P p0, 1q it holds that

›››µk pPq ´ µk
´
P̃n1

¯›››
Hk

ď c1?
n
` c2
n1
` c3

a
logpn1{δq
n1

d
NX

ˆ
12K2 logpn1{δq

n1

˙
,

with probability at least 1´ δ provided that

n1 ě max
´
67, 12K2 }Ck}´1

op

¯
log

ˆ
n1

δ

˙
,

where c1 “ 2K
a
2 logp6{δq, c2 “ 4

?
3K logp12{δq, and c3 “ 12

a
3 logp12{δqK.

Recall that a U-statistic is the average of a (symmetric) core function h “ hpx1, . . . , xmq over the observations
X1, . . . , Xn „ P (n ě m) with form

Un “ UpX1, . . . , Xmq “ 1`
n
m

˘
ÿ

c

hpXi1 , . . . , Ximq, (1)

where c is the set of the
`
n
m

˘
combinations of m distinct elements ti1, . . . , imu from t1, . . . , nu. Un is an unbiased estimator

of θ “ θpPq “ EPrhpX1, . . . , Xmqs.
Theorem A.2 (Hoeffding’s inequality for U-statistics). Let h “ hpx1, . . . , xmq be a core function for θ “ θpPq “
EP rhpX1, . . . , Xmqs with a ď hpx1, . . . , xmq ď b. Then, for any u ą 0 and n ě m,

PpUn ´ θ ě uq ď exp

ˆ
´ 2nu2

mpb´ aq2
˙
.
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Similar to (1) one can consider an alternative (slightly biased) estimator of θ, which is called V-statistic:

Vn “ V pX1, . . . , Xmq “ 1

nm

ÿ

pi1,...,imqPTmpnq
hpXi1 , . . . , Ximq, (2)

where Tmpnq is the m-fold Cartesian product of the set rns.
There is a close relation between U- and V-statistics, as it is made explicit by the following lemma [Serfling, 1980,
Lemma, Section 5.7.3].

Lemma A.1 (Connection between U- and V-statistics). Let P be a probability measure on a metric space X . Let pXiqiPrns i.i.d.„
P. Let m denote any element of rns. Let h be a core function satisfying E r|hpX1, . . . , Xmq|rs ă 8 with some r P Z`. Let
Un and Vn denote the U and V-statistic associated to h as defined in (1) and (2), respectively. Then it holds that

E r|Un ´ Vn|rs “ O
`
n´r

˘
.

Lemma A.2 (Markov inequality). For a real-valued random variable X with probability distribution P and a ą 0, it holds
that

P p|X| ě aq ď E p|X|q
a

.

A.2 PROOFS

This section is dedicated to proofs. Lemma 4.2 is derived in Section A.2.1. Proposition 4.1 is proved in Section A.2.3 relying
on two lemmas shown in Section A.2.2. Lemma 4.4 is proved in Section A.2.5, with an auxiliary result in Section A.2.4.

A.2.1 Proof of Lemma 4.2

Let µk
´
P̃n1

¯
“ řn1

i“1 α
i
k bMm“1 φkmpximq, and let µkm

´
P̃m,n1

¯
“ řn1

i“1 α
i
km
φkmpximq for m P rM s. We write

HSIC2
k,N

´
P̂n

¯
“
›››µk

´
P̃n1

¯
´bMm“1µkm

´
P̃m,n1

¯›››
2

Hk

“
›››µk

´
P̃n1

¯›››
2

Hklooooooomooooooon
“:A

´2 ¨
A
µk

´
P̃n1

¯
,bMm“1µkm

´
P̃m,n1

¯E
Hkloooooooooooooooooooooomoooooooooooooooooooooon

“:C

`
›››bMm“1µkm

´
P̃m,n1

¯›››
2

Hkloooooooooooooomoooooooooooooon
“:B

,

and continue term-by-term. Using the definition of the tensor product, we have for term A that

A “
A
µk

´
P̃n1

¯
, µk

´
P̃n1

¯E
Hk

“
n1ÿ

i“1

n1ÿ

j“1

αikα
j
k

@bMm“1φkmpximq,bMm“1φkmpxjmq
D
Hk
“

n1ÿ

i“1

n1ÿ

j“1

αikα
j
k

Mź

m“1

kmpxim, xjmq

“ αT
k

`˝Mm“1 Kkm

˘
αk.

Similarly, we obtain for term B that

B “
A
bMm“1µkm

´
P̃m,n1

¯
,bMm“1µkm

´
P̃m,n1

¯E
Hk

“
C
bMm“1

n1ÿ

ipmq“1

αi
pmq
km φkm

´
xi
pmq
m

¯
,bMm“1

n1ÿ

jpmq“1

αj
pmq
km

φkm

´
xj
pmq
m

¯G

Hk

p˚q“
Mź

m“1

n1ÿ

ipmq“1

n1ÿ

jpmq“1

αi
pmq
km αj

pmq
km

km

´
xi
pmq
m , xj

pmq
m

¯
“

Mź

m“1

αT
kmKkmαkm ,

where in p˚q we used (1), the linearity of the inner product, and the reproducing property.



Last, we express term C as

C “
C

n1ÿ

i“1

αik bMm“1 φkm
`
xim

˘
,bMm“1

n1ÿ

jpmq“1

αj
pmq
km

φkm

´
xj
pmq
m

¯G

Hk

paq“
n1ÿ

i“1

αik

C
bMm“1φkm

`
xim

˘
,bMm“1

n1ÿ

jpmq“1

αj
pmq
km

φkm

´
xj
pmq
m

¯G

Hk

pbq“
n1ÿ

i“1

αik
ź

mPrMs

C
φkm

`
xim

˘
,

n1ÿ

jpmq“1

αj
pmq
km

φkm

´
xj
pmq
m

¯G

Hk

pcq“
n1ÿ

i“1

αik
ź

mPrMs

n1ÿ

jpmq“1

αj
pmq
km

A
φkm

`
xim

˘
, φkm

´
xj
pmq
m

¯E
Hk

pdq“
n1ÿ

i“1

αik
ź

mPrMs

n1ÿ

jpmq“1

αj
pmq
km

km

´
xim, x

jpmq
m

¯

loooooooooooooooomoooooooooooooooon
pKkm qiαkm

“ αT
k

`˝Mm“1 Kkmαkm
˘
,

where (a) follows from the linearity of the inner product, (b) holds by (1), (c) is implied by the linearity of the inner product,
(d) is valid by the reproducing property, and we refer to the i-th row of Kkm as pKkmqi.
Substituting terms A,B, and C concludes the proof.

A.2.2 Two Lemmas to the Proof of Proposition 4.1

Our main result relies on two lemmas.

Lemma A.3 (Error bound for Nyström mean embedding of tensor product kernel). Let X “ pXmqMm“1 P X “ ˆMm“1Xm,
X „ P P M`

1 pX q, and pXmqmPrMs locally compact, second-countable topological spaces. Let km : Xm ˆ Xm Ñ R
be a bounded kernel, i.e. there exists akm P p0,8q such that supxmPXm

a
kmpxm, xmq ď akm for m P rM s. Let

ak “ śM
m“1 akm , k “ bMm“1km, Hk the RKHS associated to k, φk “ bMm“1φkm , Ck “ E rφkpXq b φkpXqs, n1 ď n,

and P̃n1 defined according to (14). Then for any δ P p0, 1q it holds that

›››µk pPq ´ µk
´
P̃n1

¯›››
Hk

ď ck,1?
n
` ck,2

n1
` ck,3

a
logpn1{δq
n1

d
NX

ˆ
12a2k logpn1{δq

n1

˙
,

with probability at least 1´ δ, provided that

n1 ě max
´
67, 12a2k }Ck}´1

op

¯
log

ˆ
n1

δ

˙
,

where ck,1 “ 2ak
a
2 logp6{δq, ck,2 “ 4

?
3ak logp12{δq, and ck,3 “ 12

a
3 logp12{δqak.

Proof. With X “ ˆmPrMsXm, noticing that X is locally compact second-countable iff. pXmqmPrMs are so [Willard, 1970,
Theorem 16.2(c), Theorem 18.6], Hk “ bMm“1Hkm , φk “ bMm“1φkm , and

a
kpx, xq “śM

m“1

a
kmpxm, xmq ď ak, the

statement is implied by Theorem A.1.

Proof of Lemma 4.3. To simplify notation, let µkm “ µkm pPmq, µ̃km “ µkm

´
P̃m,n1

¯
, Hk “ bMm“1Hkm , and dkm “

}µkm ´ µ̃km}Hkm
. The proof proceeds by induction on M : For M “ 1 the l.h.s. = r.h.s. =

›››µk1 pP1q ´ µk1
´
P̃1,n1

¯›››
Hk

is



satisfied, and we assume that the statement holds for M “M ´ 1, to obtain
››bMm“1µkm ´bMm“1µ̃km

››
Hk
“ ››bMm“1 µkm ´bM´1

m“1µkm b µ̃kM `bM´1
m“1µkm b µ̃kM ´bMm“1µ̃km

››
Hk

“ ››bM´1
m“1µkm b pµkM ´ µ̃kM q `

`bM´1
m“1µkm ´bM´1

m“1 µ̃km
˘b µ̃kM

››
Hk

paqď ››bM´1
m“1µkm b pµkM ´ µ̃kM q

››
Hk
` ››`bM´1

m“1µkm ´bM´1
m“1 µ̃km

˘b µ̃kM
››
Hk

pbq“
¨
˝ ź

mPrM´1s
}µkm}Hkm

˛
‚dkM `

››bM´1
m“1µkm ´bM´1

m“1 µ̃km
››bM´1

m“1Hkm
}µ̃kM }HkM

pcqď dkM
ź

mPrM´1s
akm `

››bM´1
m“1µkm ´bM´1

m“1 µ̃km
››bM´1

m“1Hkm
pakM ` dkM q

pdqď dkM
ź

mPrM´1s
akm `

$
&
%

ź

mPrM´1s
pakm ` dkmq ´

ź

mPrM´1s
akm

,
.
- pakM ` dkM q

“ dkM
ź

mPrM´1s
akm `

ź

mPrMs
pakm ` dkmq ´

ź

mPrMs
akm ´ dkM

ź

mPrM´1s
akm

“
ź

mPrMs
pakm ` dkmq ´

ź

mPrMs
akm ,

where (a) holds by the triangle inequality, (b) is implied by (2) and the definition of dkM , (c) follows from

}µkm}Hkm
“
››››
ż

Xm

kmp¨, xmqdPmpxmq
››››
Hkm

peqď
ż

Xm

}kmp¨, xmq}Hkmloooooooomoooooooon
pfq“
?
kmpxm,xmq

pgqď akm

dPmpxmq ď akm , (3)

}µ̃kM }HkM
“ }µ̃kM ´ µkM ` µkM }HkM

phqď }µ̃kM ´ µkM }HkM
` }µkM }HkM

piqď dkM ` akM ,
(d) is valid by the induction statement holding for M ´ 1, (e) is a property of Bochner integrals, (f) is implied by the
reproducing property, (g) comes from the definition of akm , the triangle inequality implies (h), (i) follows from (3) and the
definition of dkM .

A.2.3 Proof of Proposition 4.1

Let k “ bMm“1km, and let Hk “ bMm“1Hkm . We note that X “ ˆmPrMsXm is locally compact second-countable as
pXmqmPrMs are so [Willard, 1970, Theorem 16.2(c), Theorem 18.6].

We decompose the error of the Nyström approximation as
ˇ̌
ˇHSICkpPq ´HSICk,N

´
P̂n

¯ˇ̌
ˇ “

ˇ̌
ˇ̌››µkpPq ´ bMm“1µkmpPmq

››
Hk
´
›››µk

´
P̃n1

¯
´bMm“1µkm

´
P̃m,n1

¯›››
Hk

ˇ̌
ˇ̌

paqď
›››µkpPq ´ bMm“1µkmpPmq ´ µk

´
P̃n1

¯
`bMm“1µkm

´
P̃m,n1

¯›››
Hk

pbqď
›››µkpPq ´ µk

´
P̃n1

¯›››
Hklooooooooooooomooooooooooooon

t1

`
›››bMm“1µkmpPmq ´ bMm“1µkm

´
P̃m,n1

¯›››
Hkloooooooooooooooooooooooooomoooooooooooooooooooooooooon

t2

,

where (a) holds by the reverse triangle inequality, and (b) follows from the triangle inequality.

First term (t1): One can bound the error of the first term by Lemma A.3; in other words, for any δ P p0, 1q with probability
at least p1´ δq it holds that

›››µkpPq ´ µk
´
P̃n1

¯›››
Hk

ď ck,1?
n
` ck,2

n1
` ck,3

a
logpn1{δq
n1

gffeNXm

˜
12a2km logpn1{δq

n1

¸



provided that n1 ě max
´
67, 12a2k }Ck}´1

op

¯
log

´
n1
δ

¯
, with the constants ck,1 “ 2ak

a
2 logp6{δq, ck,2 “

4
?
3ak logp12{δq, ck,3 “ 12

a
3 logp12{δqak.

Second term (t2): Applying Lemma 4.3 to the second term gives
›››bMm“1µkmpPmq ´ bMm“1µkm

´
P̃m,n1

¯›››
Hk

ď
ź

mPrMs

ˆ
akm `

›››µkm pPmq ´ µkm
´
P̃m,n1

¯›››
Hkm

˙
´

ź

mPrMs
akm .

We now bound the error of each of the M factors by Theorem A.1, i.e., for fixed m P rM s; particularly we get that for any
δ P p0, 1q with probability at least 1´ δ

›››µkm pPmq ´ µkm
´
P̃m,n1

¯›››
Hkm

ď ckm,1?
n
` ckm,2

n1
` ckm,3

a
logpn1{δq
n1

gffeNXm

˜
12a2km logpn1{δq

n1

¸
, hence

akm `
›››µkm pPmq ´ µkm

´
P̃m,n1

¯›››
Hkm

ď akm `
ckm,1?
n
` ckm,2

n1
` ckm,3

a
logpn1{δq
n1

gffeNXm

˜
12a2km logpn1{δq

n1

¸
,

and by union bound that their product is for any δ P p0, 1
M q with probability at least 1´Mδ

ź

mPrMs

„
akm `

›››µkm pPmq ´ µkm
´
P̃m,n1

¯›››
Hkm


ď

ď
ź

mPrMs

«
akm `

ckm,1?
n
` ckm,2

n1
` ckm,3

a
logpn1{δq
n1

gffeNXm

˜
12a2km logpn1{δq

n1

¸ff
,

ź

mPrMs

„
akm `

›››µkm pPmq ´ µkm
´
P̃m,n1

¯›››
Hkm


´

ź

mPrMs
akm ď

ď
ź

mPrMs

«
akm `

ckm,1?
n
` ckm,2

n1
` ckm,3

a
logpn1{δq
n1

gffeNXm

˜
12a2km logpn1{δq

n1

¸ff
´

ź

mPrMs
akm ,

provided that n1 ě max
´
67, 12a2km }Ckm}´1

op

¯
log

´
n1
δ

¯
for all m P rM s, with Ckm “ E rφkmpXmq b φkmpXmqs and

constants ckm,1 “ 2akm
a
2 logp6{δq, ckm,2 “ 4

?
3akm logp12{δq, ckm,3 “ 12

a
3 logp12{δqakm , with m P rM s.

Combining the M ` 1 terms by union bound yields the stated result.

A.2.4 Lemma to the Proof of Lemma 4.4

Lemma A.4 (Deviation bound for U-statistics based HSIC estimator). It holds that
ˇ̌
ˇHSIC2

k,u

´
P̂n

¯
´HSIC2

k pPq
ˇ̌
ˇ “ OP

ˆ
1?
n

˙
,

where HSIC2
k,u is the U-statistic based estimator of HSIC2

k.

Proof. We show that (3) can be expressed as a sum of U-statistics and then bound the terms individually. First, square (3) to
obtain

HSIC2
kpPq “ Epx1,...,xM q,px11,...,x1M q„P

»
– ź

mPrMs
km

`
xm, x

1
m

˘
fi
fl

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
A

`Ex1,x11„P1,...,xM ,x1M„PM

»
– ź

mPrMs
km

`
xm, x

1
m

˘
fi
fl

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
B

´ 2Epx1,...,xM q„P,x11„P1,...,x1M„PM

»
– ź

mPrMs
kmpxm, x1mq

fi
fl

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon
C

,



where A, B, and C can be estimated by U-statistics A1n, B1n, and C 1n, respectively. Let HSIC2
k,u

´
P̂n

¯
“ A1n `B1n ´ 2C 1n,

and split t as αt` βt` p1´ α´ βqt, with α, β ą 0 and α` β ă 1. One obtains

P
´ˇ̌
ˇHSIC2

kpPq ´HSIC2
k,u

´
P̂n

¯ˇ̌
ˇ ě t

¯
ď P

`ˇ̌
A´A1n

ˇ̌ ě αt
˘` P `ˇ̌

B ´B1n
ˇ̌ ě βt

˘` P `
2
ˇ̌
C ´ C 1n

ˇ̌ ě p1´ α´ βqt˘ .

Doubling and rewriting Theorem A.2, we have that for U-statistics and any δ P p0, 1q

P

¨
˝|Un ´ θ| ě

d
mpb´ aq2 lnp 2δ q

2n

˛
‚ď δ.

Now, choosing the pθ, Un, uq triplet to be pA,A1n, αtq, pB,B1n, βtq,
´
C,C 1n,

p1´α´βqt
2

¯
, respectively, setting m “ 2M , and

observing that a ď kpx, yq ď b as k is bounded, we obtain that |A1n ´A|
?
n, |B1n ´B|

?
n, and |C 1n ´ C|

?
n are bounded

in probability and so is their sum.

A.2.5 Proof of Lemma 4.4

We consider the decomposition
ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k pPq
ˇ̌
ˇ ď

ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇlooooooooooooooooooomooooooooooooooooooon

t1

`
ˇ̌
ˇHSIC2

k,u

´
P̂n

¯
´HSIC2

k pPq
ˇ̌
ˇloooooooooooooooooomoooooooooooooooooon

t2

, (4)

by using the triangle inequality, where HSICk,u is the U-statistic based HSIC estimator.

Second term (t2): Lemma A.4 establishes that t2 “ OP

´
1?
n

¯
.

First term (t1): To bound t1, first, by Markov’s inequality (Lemma A.2) observe that

P
´ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇ ě a

¯
ď

E
´ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇ
¯

alooooooooooooooooooooooomooooooooooooooooooooooon
“:ε

,

P

¨
˝
ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇ ě

E
´ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇ
¯

ε

˛
‚ď ε,

P

¨
˝
ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇ ă

E
´ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇ
¯

ε

˛
‚ě 1´ ε,

P
ˆˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇ ă C

nε

˙ p˚qě 1´ ε,

P
ˆˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇ ě C

nε

˙
ď ε, (5)

for constant C ą 0 and n large enough, where p˚q follows from Lemma A.1 (with r “ 1). (5) implies that

ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇ “ OP

ˆ
1

n

˙
.

Combining the terms (t1 ` t2): Combining the obtained results for the two terms, one gets that

ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k pPq
ˇ̌
ˇ

(4)ď
ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k,u

´
P̂n

¯ˇ̌
ˇ`

ˇ̌
ˇHSIC2

k,u

´
P̂n

¯
´HSIC2

k pPq
ˇ̌
ˇ

“ OP

ˆ
1

n

˙
`OP

ˆ
1?
n

˙
“ OP

ˆ
1?
n

˙
. (6)



Hence

OP

ˆ
1?
n

˙
(6)ě

ˇ̌
ˇHSIC2

k

´
P̂n

¯
´HSIC2

k pPq
ˇ̌
ˇ “

ˇ̌
ˇHSICk

´
P̂n

¯
´HSICk pPq

ˇ̌
ˇ
ˇ̌
ˇHSICk

´
P̂n

¯
loooooomoooooon

(5)ě0

`HSICk pPqloooomoooon
ě0

ˇ̌
ˇ

ě
ˇ̌
ˇHSICk

´
P̂n

¯
´HSICk pPq

ˇ̌
ˇHSICk pPq ,

which by dividing with the constant HSICk pPq ą 0 implies the statement.
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