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Goodness-of-fit Testing

Given:
1 Sample {x;}7; "k (unknown) on R4,

2 Unnormalized density p (known model).
q (unknown) p (model)

Ho:p=gq * o
Hi:p#q N /\/\

X1,X92,...,Xp,

Want a test ...

1 Nonparametric.

2 Linear-time. Runtime is O(n). Fast.

3 Interpretable. Model criticism by finding *
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

Gaussian kernel on x;

Gaussian kernel on y;
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

MMD(q, p) = ||witness||
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

witness®(v) = (ug(v) — pp(v))?

o ®oe — — A%

m witness?(v) can be used to find a good test location v* = * .
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Model Criticism by the MMD Witness

m Find a location v at which ¢ and p differ most (ME test)
[Jitkrittum et al., 2016].
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Model Criticism by the MMD Witness

m Find a location v at which ¢ and p differ most (ME test)
[Jitkrittum et al., 2016].

score: 25

witness(v) = ]E,.(Nq[ k.(x) |- IEpr[_ kvﬁ(y) ]
WltLSSz(V) — No sample from p. \:

score(v) = _ . ,
noise(v) Difficult to generate. )]
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate E.p[k.(y)].
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Problem: No sample from p. Cannot estimate E.p[k.(y)].
(Stein) witness(v) = Exwq] Tpkv(x) ]

Idea: Define T, such that E,.,(Tpk.)(y) =0, for any v.

Proposal: Good v should have high

.t 2
score(v) = witness®(v)

noise(v)

signal-to-noise
ratio

m score(v) can be estimated in linear-time.
Goodness-of-fit test:

1 Find v* = arg max, score(v).
2 Reject Hp if witness?(v*) > threshold.
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Theory

What is Tpky?
Test statistic
Distributions of the test statistic, test threshold.

What does v* = arg max, score(v) do theoretically?
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[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:
1 d

Byn (TR0 = [ [Mdy R (v)p (y>1]pey7dy

- / ol
sty )1;_310
=0

(assume limy| o0 kv (y)P(¥))
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(2) Proposal: The Finite Set Stein Discrepancy (FSSD)

m Recall Stein witness: g(v) := Ex~q [ii[k‘,(x)p(x)]]

m FSSD statistic: Evaluate g2 at J test locations V = {vy,...,v/}.
m Population FSSD
J

FSSD? = Z g(vj)I3.

= Unbiased estimator FSSD2 computable in O(d2Jn) time. (d = input

dimension)
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(2) FSSD is a Discrepancy Measure
= FSSD? = 3 7 [le(vy)II3

Theorem 1 (FSSD is a discrepancy measure).
Main conditions:

1 (Nice kernel) Kernel k is Cy-universal, and real analytic e.g.,
Gaussian kernel.

2 (Vanishing boundary) lim) e 2(x)kv(x) = 0.
3 (Avoid “blind spots”) Locations vi,...,vy ~n which has a density.

Then, for any J > 1, n-almost surely,

FSSD? =0 < p=q. I

Summary: Evaluating the witness at random locations is sufficient to
detect the discrepancy between p, g.
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Consider p = N(0,1) and ¢ = N(0,02). Use unit-width Gaussian kernel.

v exp (—ﬁ) (02 -1)
g(v) = 373
(1+02)

m If v = 0, then FSSD? = g2(v) = 0 regardless of 0'3.

m If g #0, and k is real analytic, R = {v | g(v) = 0} (blind spots) has 0
Lebesgue measure.

m So, if v ~ a distribution with a density, then v ¢ R.
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(4) What Does arg max, score(v) Do?

Proposition 1 (Asymptotic test power).
For large n, the test power P(reject Hy | Hy true) =

—_— _— PHH(;\”)
Py, (nFSSD2 > T,) T
FSSD? T, Py (A
~ q, _ a . H.( n)
(\/ﬁ OH, \/ﬁo’fﬁ) ’
0 20 40 60 80
where & = CDF of N(0,1). A,
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m For large n, the 2% term dominates.
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(4) What Does arg max, score(v) Do?

Proposition 1 (Asymptotic test power).
For large n, the test power P(reject Hy | Hy true) =

—_— _— PHH(;\”)
Py, (nFSSD2 > Ty,) T
FSSD? T, > P
~ & n — , — THhn
(f oH, Vnog,
0 20 40 60 80
where & = CDF of N(0,1). A,

m For large n, the 2% term dominates.

—— FSSD?
arg max Py, (nFSSD? > T,) &~ arg max [
V,O']% V,a'% [ UHl

= score(V, U,%)J .

Maximize score(V,0%) <= Maximize test power

m In practice, split {x;}7 ; into independent training/test sets. Optimize

on tr. Goodness-of-fit test on te.
14/25
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Kernel Stein Discrepancy (KSD) [Liu et al, 2016, Chwialkowski et al., 2016]

m Recall Stein witness:

g(v) := Ex~q [

_1_d
p(x) dx

[k (x)p(x)]].

— plx)
— q(x)
— glx)
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Kernel Stein Discrepancy (KSD) [Liu et al, 2016, Chwialkowski et al., 2016]

m Recall Stein witness: — plx)
— qx)
&(v) = Exng | o [oe (x)p ()] —

KSD
— witness l
\% x v
KSD? = ||g|ldkus (RKHS norm). FSSD? = 45 271 lle(vi)l3.

Good when the difference between Good when the difference between
D, q is spatially diffuse. P, q is local.
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Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: [Liu et al., 2016, Chwialkowski et al., 2016]

double sums

—
KSD? = ||g||12:tKHS = ExwqEyng hp(x,y)
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Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: [Liu et al., 2016, Chwialkowski et al., 2016]

double sums
2 2 ‘ N
KSD* = ||g||lgkus = Ex~gEyng hp(x:}’)
where
hp(x,y) = [Ox log p(x)] k(x,y) [0y log p(¥)]
+ [0y log p(y)] Oxk(x,y)
+ [0x log p(x)] Oy k(x,y)
+ 5%z55rk(><,)f)

and k is a kernel.

m X The “double sums” make it O(d?n?). Slow.
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Linear-Time Kernel Stein Discrepancy (LKS)

m [Liu et al., 2016] also proposed a linear version of KSD.
m For {x;}7; ~ g, KSD test statistic is

‘1‘2345678

Zh (x1,%5).

z<]

n—l

| ~| o o & w| N =

m LKS test statistic is a “running average”

HE

w
IS
a
>
~
©

n/2

*Zh X2i— 17X21

| ~| o o a| w| o =

\
m Both unbiased. LKS has O(d?n) runtime. Same as proposed FSSD.

m X LKS has high variance. Poor test power.
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Simulation Settings

m Gaussian kernel k(x,Vv) = exp <_|X—V|§>

2
203,

Method Description

1 FSSD-opt Proposed. With optimization. J = 5.
2 FSSD-rand Proposed. Random test locations.
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Simulation Settings

m Gaussian kernel k(x,Vv) = exp <_|x—"|§>

20%
Method Description
1 FSSD-opt Proposed. With optimization. J = 5.
FSSD-rand Proposed. Random test locations.
3 KSD Quadratic-time kernel Stein discrepancy
[Liu et al., 2016, Chwialkowski et al., 2016]
4 LKS Linear-time running average version of KSD.
- 1., 2012]. Wi
5  MMD-opt Ml\/.ID.twc_) sample test [Gretton et al., 2012]. With
optimization.
6  ME-test Mean Embeddings two-sample test

[Jitkrittum et al., 2016]. With optimization.

m Two-sample tests need to draw sample from p.
m Tests with optimization use 20% of the data.

m Significance level a = 0.05.
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Gaussian Vs. Laplace

m p = Gaussian. ¢ = Laplace. Same mean and variance. High-order

moments differ.
m Sample size n = 1000.

—_
)

Rejection rate
(@]
Ut

3
:'_-_'_—_-.r-.._‘__.._...-.

o
o

1 5 10 15
dimension d

m Optimization increases the power.

m Two-sample tests can perform well in this case (p, g clearly differ).

FSSD-opt
FSSD-rand
KSD

LKS
MMD-opt
ME-opt
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Gaussian-Bernoulli Restricted Boltzmann Machine (RBM)

® p(x) is the marginal of

1 1
p(x,h) = - €XP (xTBh +b'x+c'x— 2||x||2) )

where x € R%0, h € {+1}*° is latent. Randomly pick B, b, c.
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Gaussian-Bernoulli Restricted Boltzmann Machine (RBM)

® p(x) is the marginal of

1 1
p(x,h) = - €XP (xTBh +b'x+c'x— 2||x||2) )

where x € R%0, h € {+1}*° is latent. Randomly pick B, b, c.

m g(x) = p(x) with i.i.d. N(0, oper) noise added to all entries of B.

m Sample size n = 1000.

—
o

Rejection rate
jan)
(@

o
o

T0.00 0.02  0.04  0.06

Perturbation SD o,

KSD (O(n?)), FSSD-opt (O(n)) comparable. LKS has low power.

FSSD-opt
FSSD-rand
KSD

LKS
MMD-opt
ME-opt
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Interpretable Test Locations: Chicago Crime
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Interpretable Test Locations: Chicago Crime

o 3 :.' .,‘= .
“ag YT N Y, m n = 11957 robbery events
R ATE A in Chicago in 2016.
:‘, IR P LRC .
il 1% Zc) S, e lat/long coordinates =
s 2 ' - sample from gq.
j v AR m Model spatial density with
|ﬁ 25 o oy M 0 Gaussian mixtures.
se o .l ‘f-&%."hc’..
., .‘ o' : -
g
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Interpretable Test Locations: Chicago Crime

e
W
: : o
s % A\ )
7R
Wit PR 2°%
A Model p = 2-component Gaus-
S 7 sian mixture.
O b‘: .’ il
= Zahls
o
u"
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Interpretable Test Locations: Chicago Crime
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Interpretable Test Locations: Chicago Crime

/" | - A%
@ “‘" . 'l ' ’
[7- Ay~ NG
‘ 3 5 FACHITALA
oﬁ"
Ayl . ’,
% = optimized v.
& B 3.
: Nos® V: f -
R A
=
g
N LN}
L )
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Interpretable Test Locations: Chicago Crime

% = optimized v.
No robbery in Lake Michigan.

22/25



Interpretable Test Locations: Chicago Crime

A T
-~ .:‘,.., D
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A Model p = 10-component Gaus-
- sian mixture.
o ‘:%
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Interpretable Test Locations: Chicago Crime

Capture the right tail better.



Interpretable Test Locations: Chicago Crime

Still, does not capture the left
tail.




Interpretable Test Locations: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are in-
terpretable.
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope &~ rate of p-value — 0 under H; as n — oo.
m Measure a test’s sensitivity to the departure from Hp.
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope &~ rate of p-value — 0 under H; as n — oo.
m Measure a test’s sensitivity to the departure from Hp.

HoZBZO,
H19750

m Typically pval, ~ exp (—%c(&)n) where c¢(6) > 0 under Hy, and
¢(0) = 0 [Bahadur, 1960].
m c(f) higher — more sensitive. Good.

1.0
p-value of T,(ll>
= p-value of T,(LZ)
'£0.5
A
0.0
0 50 100
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope &~ rate of p-value — 0 under H; as n — oo.
m Measure a test’s sensitivity to the departure from Hp.

HoZBZO,
H19750

m Typically pval, ~ exp (—%c(&)n) where c¢(6) > 0 under Hy, and
¢(0) = 0 [Bahadur, 1960].
m c(f) higher — more sensitive. Good.

1.0
— pvalueof 70 Bahadur slope
© v @ log (1 — F(T,
En p-value of Tj; ¢(8) := —2 plim og ( ( n))’
§ 0.5 n—00 n
o
where F'(t) = CDF of T, under Hp.
0.0 m Bahadur efficiency = ratio of slopes
0 50 100

of two tests.
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N(pq, 1).
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N(pq, 1).

e

m Assume J = 1 location for nFSSD2. Gaussian kernel (bandwidth = o)

v2 (v=rq)?®
)3 2 ag+2 a}f+1

2
PSSP (g, v, 07) = —= R .
&+ 1(0f +1) (of +4og + (v* +5) 0f +2)
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N(pq, 1).

e,

m Assume J = 1 location for nFSSD2. Gaussian kernel (bandwidth = o)

v2 (v=rq)?®
)3 2 ag+2 a}f+1

2
PSSP (g, v, 07) = —= PR 2
&+ 1(0f +1) (of +4og + (v* +5) 0f +2)

m For LKS, Gaussian kernel (bandwidth = x2).

(52)°% (52 +4)°%

(
¢ 2 (K2 + 2) (K® + 8KO + 214 + 202 + 12)°

LKS) (,Uq, K’z) =
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N(pq, 1).

e,

m Assume J = 1 location for nFSSD2. Gaussian kernel (bandwidth = o)

2 (v=rd)?

3 ST
2 2 2,07 +2 oZ41
(o (O’k + 2) pge’r k

2

k

C(FSSD)(

KgyV,08) = - ; . .
&+ 1(0f +1) (of +4og + (v* +5) 0f +2)

m For LKS, Gaussian kernel (bandwidth = «2).

() (2 + )" 4
2 (k% +2) (k® + 8k8 + 21k* + 20Kk2 + 12)°

(LKS)(/J’Q, ) =

Theorem 2 (FSSD is at least two times more efficient).

Fiz 0']c 1 for nFSSD2 Then, Vuq #0, dJv € R, Vk? > 0, we have

Bahadur efficiency
cFSSD) (g, v, 03)

) (g, %)

> 2.
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Conclusion

m Proposed The Finite Set Stein Discrepancy (FSSD).
m Goodness-of-fit test based on FSSD is

1 nonparametric,

2 linear-time,

3 tunable (parameters automatically tuned).

4 interpretable.

A Linear-Time Kernel Goodness-of-Fit Test
Wittawat Jitkrittum, Wenkai Xu, Zoltan Szabd, Kenji Fukumizu, Arthur Gretton

NIPS 2017 (best paper award)
Python code: https://github.com/wittawatj/kgof
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https://github.com/wittawatj/kgof

Questions?

Thank you

26/25



[Mustration: Score Surface

m Consider J =1 location.
m score(v) = %M (gray), p in wireframe, {x;}7_; ~ ¢ in purple, X =

S ER) )

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

best v.
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[Mustration: Score Surface

m Consider J = 1 location.

m score(v) = %M (gray), p in wireframe, {x;}7_; ~ ¢ in purple, X =

best v.

p =N (0,1I) vs. ¢ = Laplace with same mean & variance.

FSSD2/677,

0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
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FSSD and KSD in 1D Gaussian Case

Consider p = N(0,1) and g = N (ug,07).
m Assume J = 1 feature for nFSSD?. Gaussian kernel (bandwidth = o).

_ (”—WZ)Z

ot T ((oF+1) b+ (02 - 1))

FSSD? = .
(0% +0%)

0.2
mIfpg#0,02# 1, and v = —((kj%“a then FSSD? =0 !
G'qf

This is why v should be drawn from a distribution with a density.
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FSSD and KSD in 1D Gaussian Case

Consider p = N(0,1) and g = N (ug,07).
m Assume J = 1 feature for nFSSD?. Gaussian kernel (bandwidth = o).

_ (”—WZ)Z

ot T ((oF+1) b+ (02 - 1))

FSSD? = .
(0% +0%)

0.2
mIfpg#0,02# 1, and v = —((kj%‘q, then FSSD? =0 !
G'qf

This is why v should be drawn from a distribution with a density.
m For KSD, Gaussian kernel (bandwidth = «2).
B (2 4200) + (02 1)

(2 +202) /5 41

S2
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F'SSD is a Discrepancy Measure

Theorem 3.

Let V ={v1,...,v;} C R? be drawn i.i.d. from a distribution n which
has a density. Let X be a connected open set in R%. Assume

1 (Nice RKHS) Kernel k: X x X — R s Cy-unwversal, and real
analytic.

2 (Stein witness not too rough) ||g||% < oo.

3 (Finite Fisher divergence) Ex.q||Vx log (X) I? < o0 .

4 (Vanishing boundary) lim|y e P(%)g(x) = 0.
Then, for any J > 1, n-almost surely

FSSD? = 0 if and only if p = q. I

o2
m Gaussian kernel k(x,v) = exp (—"‘20\;'2> works.
k

m In practice, J =1or J =5.
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Asymptotic Distributions of FSSD?

m Recall {(x,V) := (X)B [k(x, v)p(x)] € RE.

m 7(x) := vertically stack £(x,v1),...£&(x,vs) € R¥. Feature vector of x.
m Mean feature: p:= Ex.q[7(x)].

B 2, = covxr[T(X)] € RY* for r € {p, ¢}
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Asymptotic Distributions of FSSD?

m Recall {(x,V) := (X)B [k(x, v)p(x)] € RE.

m 7(x) := vertically stack £(x,v1),...£&(x,vs) € R¥. Feature vector of x.
m Mean feature: p:= Ex.q[7(x)].

B 2, = covxr[T(X)] € RY* for r € {p, ¢}

Proposition 2 (Asymptotic distributions).

Let Zy,..., 245 o N(0,1), and {w;}¥/, be the eigenvalues of .

1 Under Hy : p = q, asymptotically nFSSD2 “ Zfil(Zf — Dw;.
Easy to simulate to get p-value.
Stmulation cost independent of n.

2 Under Hy : p # q, we have \/E(FESBZ — FSsD?) 3 N(0,0%,) where
0% = 4u"B,u. Implies P(reject Hy) — 1 as n — oo.
H q

But, how to estimate ¥,7 No sample from p!

m Theorem: Using 3}, (computed with {x;}7 ; ~ ¢) still leads to a

consistent test.
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Bahadur Slopes of FSSD and LKS

Theorem 4.
The Bahadur slope of nFSSD? is

c(FSSD) . — FSSD? /ws,

where wy is the mazimum eigenvalue of By, 1= covxp[T(X)].
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Bahadur Slopes of FSSD and LKS

Theorem 4.

The Bahadur slope of nFSSD? is
c(FSSD) . — FSSD? /ws,
where wy is the mazimum eigenvalue of By, 1= covxp[T(X)].

Theorem 5.

The Bahadur slope of the linear-time kernel Stein (LKS) statistic
V/nS? is

(LKS) _ }[thp(X, XI)]z

‘ 2 E, [hg(x, XI)] 7

where h, 1s the U-statistic kernel of the KSD statistic.
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Harder RBM Problem

m Perturb only one entry of B € R3%*4? (in the RBM).

m Bi1 ¢+ Bi1+N(0,02, =0.1%).

Rejection rate

e
o
S

o o
at ~J
o Ot

<
B
St

lh=========.==='-HI==‘F===EEEE=E‘

2000 4000
Sample size n

FSSD-opt
FSSD-rand
KSD

LKS
MMD-opt
ME-opt

m Two-sample tests fail. Samples from p, ¢ look roughly the same.

m FSSD-opt is comparable to KSD at low n. One order of magnitude

faster.
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