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Problem Setting: Goodness-of-Fit Test

H0 : p = q

H1 : p 6= q ?

(unknown) (model)

z }| {
x1; x2; : : : ; xn

The developed test:

1 (Testing) Outputs “reject H0” or “fail to reject H0”, and p-value.

2 If “reject H0”, shows a location v where the model does not fit well.
Interpretable.

Runtime complexity is O(n). Fast.
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Interpretable Features: Chicago Crime
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Interpretable Features: Chicago Crime

n = 11957 robbery events
in Chicago in 2016.

� lat/long coordinates =
sample from q .

Model spatial density with
Gaussian mixtures.
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Interpretable Features: Chicago Crime

Model p = 2-component Gaus-
sian mixture.
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Interpretable Features: Chicago Crime

Score surface
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Interpretable Features: Chicago Crime

F = optimized v.
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Interpretable Features: Chicago Crime

F = optimized v.
No robbery in Lake Michigan.
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Score Function for Model Criticism

Proposal: A good location v should have high

score(v) =
jsignal(v)j
noise(v)

:

score(v) can be estimated in linear-time.

Goodness-of-fit test:

Find v� = argmaxv score(v).

Use signal2(v�) as the test statistic.

General form: score(v1; : : : ;vJ ).
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Demo

Use Jupyter notebook.
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signal(v) and noise(v)

score(v) =
jsignal(v)j
noise(v)

=
jEx�q [Tpkv(x)]jq
Vx�q [Tpkv(x)]

:

where

Tpkv(x) : = kv(x)
d
dx

log p(x) +
d
dx

kv(x):

d
dx log p(x) does not depend on the normalizer.
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where

Tpkv(x) : = kv(x)
d
dx

log p(x) +
d
dx

kv(x):

d
dx log p(x) does not depend on the normalizer.

kv(x) = v = a kernel (e.g., Gaussian) centered at v.
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Model p = N (0; I)

p(x) =
1

(2�)d=2
exp

 
�kxk

2

2

!
:

log p(x) = �kxk
2

2
�d
2
log 2�:

d
dx

log p(x) = �x:

In the implementation, only need to specify ~p(x) = exp
�
�kx��k22

�
.

autograd automatically computes d
dx log p(x).
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Limitations and Technical Conditions

Some limitations (that can be fixed in future work).

1 score(v1; : : : ;vJ ) does not penalize locations that are too close to
each other.

� Two locations can collapse to the same point.
� Solution: Use a normalized statistic [Jitkrittum et al., 2016]. Explicit

penalty.

2 (Vanishing boundary condition) Require limkxk!1 k(x;v)p(x) = 0
for any v.

� Require the domain to be full Rd in many cases.

3 Optimizing fv1; : : : ;vJg jointly by gradient ascent may not be the
best way.
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Conclusions

A new discrepancy measure between a density p and a dataset.

Proposed a new goodness-of-fit test.

1 Can be applied to a wide range of models p.
2 Linear-time. Fast.
3 Interpretable.

Python code: https://github.com/wittawatj/kernel-gof
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Questions?

Thank you
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Proposal: Model Criticism with the Score

score(v) =
jsignal(v)j
noise(v)

:
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Proposal: Model Criticism with the Score
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Proposal: Model Criticism with the Score

score: 0.16

score(v) =
jsignal(v)j
noise(v)

:
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Proposal: Model Criticism with the Score

score: 0.44

score(v) =
jsignal(v)j
noise(v)

:
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Model Criticism by Maximum Mean Discrepancy [?]

Find a location v at which q and p differ most [?].
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Model Criticism by Maximum Mean Discrepancy [?]

Find a location v at which q and p differ most [?].

score: 0.008

kv(x) = v

witness(v) = Ex�q [ v ]� Ey�p[ v ]

score(v) =
jwitness(v)j

standard deviation(v)
:
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Model Criticism by Maximum Mean Discrepancy [?]

Find a location v at which q and p differ most [?].

score: 1.6

witness(v) = Ex�q [ v ]� Ey�p[ v ]

score(v) =
jwitness(v)j

standard deviation(v)
:
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Model Criticism by Maximum Mean Discrepancy [?]

Find a location v at which q and p differ most [?].

score: 13

witness(v) = Ex�q [ v ]� Ey�p[ v ]

score(v) =
jwitness(v)j

standard deviation(v)
:
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Model Criticism by Maximum Mean Discrepancy [?]

Find a location v at which q and p differ most [?].

score: 25

Best v

witness(v) = Ex�q [ v ]� Ey�p[ v ]

score(v) =
jwitness(v)j

standard deviation(v)
:
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Model Criticism by Maximum Mean Discrepancy [?]

Find a location v at which q and p differ most [?].

score: 25

Best v

witness(v) = Ex�q [ v ]� Ey�p[ v ]

score(v) =
jwitness(v)j

standard deviation(v)
:

No sample from p.
Difficult to generate.
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate Ey�p [kv(y)].
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jwitness(v)j
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signal-to-noise
ratio

score(v) can be estimated in linear-time.
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FSSD is a Discrepancy Measure
Theorem 1.
Let V = fv1; : : : ;vJg � Rd be drawn i.i.d. from a distribution � which
has a density. Let X be a connected open set in Rd . Assume

1 (Nice RKHS) Kernel k : X � X ! R is C0-universal, and real
analytic.

2 (Stein witness not too rough) kgk2F <1.

3 (Finite Fisher divergence) Ex�qkrx log
p(x)
q(x)k2 <1 .

4 (Vanishing boundary) limkxk!1 p(x)g(x) = 0.

Then, for any J � 1, �-almost surely

FSSD2 = 0 if and only if p = q.

Gaussian kernel k(x;v) = exp
�
�kx�vk22

2�2
k

�
works.

In practice, J = 1 or J = 5.
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Asymptotic Distributions of\FSSD2

Recall �(x;v) := 1
p(x)@x[k(x;v)p(x)] 2 Rd :

� (x) := vertically stack �(x;v1); : : : �(x;vJ ) 2 RdJ . Feature vector of
x.
Mean feature: � := Ex�q [� (x)].
�r := covx�r [� (x)] 2 RdJ�dJ for r 2 fp; qg

Proposition 1 (Asymptotic distributions).

Let Z1; : : : ;ZdJ
i :i :d :� N (0; 1), and f!igdJi=1 be the eigenvalues of �p.

1 Under H0 : p = q, asymptotically n \FSSD2 d!PdJ
i=1(Z

2
i � 1)!i .

� Easy to simulate to get p-value.
� Simulation cost independent of n.

2 Under H1 : p 6= q, we have
p

n(\FSSD2 � FSSD2)
d! N (0; �2

H1
)

where �2
H1

:= 4�>�q�. Implies P(reject H0)! 1 as n !1.

But, how to estimate �p? No sample from p!

Theorem: Using �̂q (computed with fxigni=1 � q) still leads to a
consistent test.
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Illustration: Optimization Objective

Consider J = 1 location.
Training objective

\FSSD2(v)c�H1 (v)
(gray), p in wireframe, fxigni=1 � q in

purple, H = best v.

p = N
 
0;

 
1 0
0 1

!!
vs. q = N

 
0;

 
2 0
0 1

!!
.
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Illustration: Optimization Objective

Consider J = 1 location.
Training objective

\FSSD2(v)c�H1 (v)
(gray), p in wireframe, fxigni=1 � q in

purple, H = best v.

p = N (0; I) vs. q = Laplace with same mean & variance.
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