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Interpretable Features: Chicago Crime
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Interpretable Features: Chicago Crime
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Interpretable Features: Chicago Crime

Score surface
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Interpretable Features: Chicago Crime

% = optimized v.
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Interpretable Features: Chicago Crime

% = optimized v.
No robbery in Lake Michigan.
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Score Function for Model Criticism

Proposal: A good location v should have high

_ |signal(v)|

score(v) nolse(v)
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Score Function for Model Criticism

Proposal: A good location v should have high

_ |signal(v)|

score(v) nolse(v)

m score(v) can be estimated in linear-time.

Goodness-of-fit test:
® Find v* = arg max, score(v).
m Use signal?(v*) as the test statistic.

m General form: score(vy,...,vy).
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Demo

Use Jupyter notebook.
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signal(v) and noise(v)

_ [signal(v)] _ [Ex~q[Tpky(x)]]

noise(v) Vgl Tp kv (x)] .

score(v)
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signal(v) and noise(v)

_ [signal(v)] _ [Ex~q[Tpky(x)]]

score(v)

where

Tyho(x) = bu(x) e Tog P(x) + e u(x).

dx

[ d% log p(x) does not depend on the normalizer.

m ok (x)= /xzz\= a kernel (e.g., Gaussian) centered at v.

noise(v) Vgl Tp kv (x)] .
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Model p = N(0,1)
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Model p = N (0,1)

dix log p(x) = —x.

m In the implementation, only need to specify p(x) = exp (—M)

® autograd automatically computes d% log p(x).
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Limitations and Technical Conditions

Some limitations (that can be fixed in future work).

1 score(vi,...,v ) does not penalize locations that are too close to
each other.
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Limitations and Technical Conditions

Some limitations (that can be fixed in future work).

1 score(vi,...,v ) does not penalize locations that are too close to
each other.

Two locations can collapse to the same point.
Solution: Use a normalized statistic [Jitkrittum et al., 2016]. Explicit

penalty.
2 (Vanishing boundary condition) Require limy| o0 k(X, v)p(x) = 0
for any v.
Require the domain to be full R? in many cases.

3 Optimizing {v1,...,v s} jointly by gradient ascent may not be the
best way.
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Conclusions

B A new discrepancy measure between a density p and a dataset.

Proposed a new goodness-of-fit test.

1 Can be applied to a wide range of models p.
2 Linear-time. Fast.
3 Interpretable.

Python code: https://github.com/wittawatj/kernel-gof I
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https://github.com/wittawatj/kernel-gof

Questions?

Thank you
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Proposal: Model Criticism with the Score
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score(v) = signal(v)
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Model Criticism by Maximum Mean Discrepancy [?]

m Find a location v at which ¢ and p differ most [?].
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Model Criticism by Maximum Mean Discrepancy [?]

m Find a location v at which g and p differ most [?].

score: 0.008

witness(v) = Equ[/\ Eypl /\

|witness(v)|

score(v) = standard deviation(v)’
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Model Criticism by Maximum Mean Discrepancy [?]

m Find a location v at which g and p differ most [?].

score: 1.6

witness(v) = Equ[/‘i\] — Eypl V ]

score(v) |witness(v)|
v) = .
standard deviation(v)
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Model Criticism by Maximum Mean Discrepancy [?]
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Model Criticism by Maximum Mean Discrepancy [?]

m Find a location v at which g and p differ most [?].

score: 25

witness(v) = Equ[/‘i\] — Eypl V ]

B |witness(v)| \ No sample from p.
score(v) = standard deviation(v) ™  Difficult to generate.
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate E [k, (y)]-
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate E [k, (y)]-
(Stein) witness(v) = Exwq| Tpke(x) |

Idea: Define T}, such that Ey.,(Tpk,)(y) =0, for any v.

Proposal: Good v should have high

it
score(v) = |witness(v)|

signal-to-noise ) ~ standard deviation(v)’
ratio

m score(v) can be estimated in linear-time.
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F'SSD is a Discrepancy Measure

Theorem 1.

Let V ={vi,...,v;} C R? be drawn i.i.d. from a distribution n which
has a density. Let X be a connected open set in R%. Assume

1 (Nice RKHS) Kernel k: X x X — R is Cy-unwversal, and real
analytic.

2 (Stein witness not too rough) ||g||% < .
3 (Finite Fisher divergence) Ex.4||Vx log %W <00 .
4 (Vanishing boundary) limx|»e P(X)g(x) = 0.

Then, for any J > 1, n-almost surely

FSSD? = 0 if and only if p = q. I

m Gaussian kernel k(x,Vv) = exp (—”le%) works.

20%
m In practice, J =1or J =5.
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Asymptotic Distributions of FSSD?

m Recall ¢{(x,V) := ﬁ@x[k(x,v)p(x)] € R4

m 7(x) := vertically stack £(x,v1),...£&(x,vs) € R¥. Feature vector of
X.

m Mean feature: p:= Ex.q[T(x)].

B 3, 1= cover|T(X)] € R¥*4 for r € {p, q}
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m 7(x) := vertically stack £(x,v1),...£&(x,vs) € R¥. Feature vector of
X.

m Mean feature: p:= Ex.q[T(x)].
B 3, = covxr[T(X)] € R¥*4 for r € {p, ¢}

Proposition 1 (Asymptotic distributions).

Let Zy,..., 245 e N(0,1), and {w;}¥/, be the eigenvalues of T,.

1 Under Hy : p = q, asymptotically nFSSD? 4 Zfil( 2 — Dw;.
Easy to simulate to get p-value.
Stmulation cost independent of n.

2 Under Hy : p # g, we have \/ﬁ(FgéB2 — FSSD?) 4 N(0,0%,)
where 0% = 4p' Dop. Implies P(reject Ho) — 1 as n — oo.

But, how to estimate 3,7 No sample from p!

m Theorem: Using 33, (computed with {x;}? ; ~ q) still leads to ais/s
cons<istent test



Illustration: Optimization Objective

m Consider J = 1 location.

m Training objective F%S% (gray), p in wireframe, {x;}]"; ~ ¢ in
H

purple, % = best v.

ol 1) oo (3 2))
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Illustration: Optimization Objective

m Consider J = 1 location.

m Training objective F%S% (gray), p in wireframe, {x;}]"; ~ ¢ in
H
purple, % = best v.

p =N (0,1I) vs. ¢ = Laplace with same mean & variance.
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16/9



References I

17/9



	Appendix

