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What Is Independence Testing?

Let (X ;Y ) 2 Rdx � Rdy be random vectors following Pxy .
Given a joint sample f(xi ;yi )g

n
i=1 � Pxy (unknown), test

H0 :Pxy = PxPy ;

vs. H1 :Pxy 6= PxPy :

Compute a test statistic �̂n . Reject H0 if �̂n > T� (threshold).
T� = (1� �)-quantile of the null distribution.
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Motivations

Modern state-of-the-art test is HSIC [Gretton et al., 2005].

3 Nonparametric i.e., no assumption on Pxy . Kernel-based.

7 Slow. Runtime: O(n2) where n = sample size.

7 No systematic way to choose kernels.

Propose the Finite-Set Independence Criterion (FSIC).

1 Nonparametric.

2 Linear-time. Runtime complexity: O(n). Fast.

3 Tunable i.e., well-defined criterion for parameter tuning.
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Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�
kx�vk2

2�2
x

�
.

2 Pick some feature (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :
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General Form of FSIC

FSIC2(X ;Y ) =
1
J

JX
j=1

cov2
(x;y)�Pxy

[k(x;vj ); l(y;wj )] ;

for J features f(vj ;wj )g
J
j=1 2 R

dx � Rdy .

Proposition 1.
Assume

1 Kernels k and l satisfy some conditions (e.g. Gaussian kernels).

2 Features f(vi ;wi )g
J
i=1 are drawn from a distribution with a density.

Then, for any J � 1,
FSIC(X ;Y ) = 0 if and only if X and Y are independent

Under H0 : Pxy = PxPy ,

n\FSIC2 � weighted sum of J dependent �2 variables.

Difficult to get (1� �)-quantile for the threshold.
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Normalized FSIC (NFSIC)

Let û :=

�dcov[k(x;v1); l(y;w1)]; : : : ;dcov[k(x;vJ ); l(y;wJ )]

�>
2 RJ .

Then, \FSIC2 = 1
J û>û.

\NFSIC2(X ;Y ) = �̂n := nû>
�
�̂ + 
nI

�
�1û;

with a regularization parameter 
n � 0.

�̂ij = covariance of ûi and ûj .

Theorem 1 (NFSIC test is consistent).
Assume 
n ! 0, and same conditions on k and l as before.

1 Under H0, �̂n
d
! �2(J ) as n !1. Easy to get threshold T�.

2 Under H1, P(reject H0)! 1 as n !1.

Complexity: O(J 3 + J 2n + (dx + dy)Jn). Only need small J .
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Tuning Features and Kernels

Split the data into training (tr) and test (te) sets.

Procedure:

1 Choose f(vi ;wi )g
J
i=1 and Gaussian widths by maximizing �̂

(tr)
n (i.e.,

computed on the training set). Gradient ascent.

2 Reject H0 if �̂(te)n > (1� �)-quantile of �2(J ).

Splitting avoids overfitting.

Theorem 2.
This procedure increases a lower bound on P(reject H0 j H1 true)
(test power).

Asymptotically, false rejection rate is �.

7/10



Tuning Features and Kernels

Split the data into training (tr) and test (te) sets.

Procedure:

1 Choose f(vi ;wi )g
J
i=1 and Gaussian widths by maximizing �̂

(tr)
n (i.e.,

computed on the training set). Gradient ascent.

2 Reject H0 if �̂(te)n > (1� �)-quantile of �2(J ).

Splitting avoids overfitting.

Theorem 2.
This procedure increases a lower bound on P(reject H0 j H1 true)
(test power).

Asymptotically, false rejection rate is �.

7/10



Tuning Features and Kernels

Split the data into training (tr) and test (te) sets.

Procedure:

1 Choose f(vi ;wi )g
J
i=1 and Gaussian widths by maximizing �̂

(tr)
n (i.e.,

computed on the training set). Gradient ascent.

2 Reject H0 if �̂(te)n > (1� �)-quantile of �2(J ).

Splitting avoids overfitting.

Theorem 2.
This procedure increases a lower bound on P(reject H0 j H1 true)
(test power).

Asymptotically, false rejection rate is �.

7/10



Simulation Settings

Gaussian kernels k(x;x0) = exp
�
�
kx�x0k22

2�2
x

�
for both X and Y .

Method Description

1 NFSIC-opt NFSIC with optimization. O(n).

2
QHSIC
[Gretton et al., 2005]

State-of-the-art HSIC. O(n2).

3 NFSIC-med NFSIC with random features.
4 NyHSIC Linear-time HSIC with Nystrom approx.
5 FHSIC Linear-time HSIC with random Fourier features

6
RDC
[Lopez-Paz et al., 2013]

Canonical Correlation Analysis with cosine basis.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

J = 10 in NFSIC.
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Youtube Video (X ) vs. Caption (Y ).

X 2 R2000: Fisher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].
Y 2 R1878: Bag of words. Term frequency.
� = 0:01.

2000 4000 6000 8000
Sample size n

0.0
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0.8

1.0

T
e
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 p
o
w

e
r

QHSIC

For large n , NFSIC is comparable to HSIC.
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Conclusions

Proposed The Finite Set Independence Criterion (FSIC).
Independece test based on FSIC is

1 nonparametric,
2 linear-time,
3 adaptive (parameters automatically tuned).

An Adaptive Test of Independence with Analytic Kernel Embeddings
Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton
https://arxiv.org/abs/1610.04782
(to appear in ICML 2017)

Python code: https://github.com/wittawatj/fsic-test
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Questions?

Thank you
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Requirements on the Kernels
Definition 1 (Analytic kernels).
k : X � X ! R is said to be analytic if for all x 2 X , v ! k(x;v) is a real
analytic function on X .

Analytic: Taylor series about x0 converges for all x0 2 X .

=) k is infinitely differentiable.

Definition 2 (Characteristic kernels).
Let �P (v) := Ez�P [k(z;v)].

k is said to be characteristic if �P is unique for distinct P . Equivalently,
P 7! �P is injective.

P

Q
}MMD(P,Q)MMD(P,Q)

RKHSSpace of distributions

µP

µQ
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Optimization Objective = Power Lower Bound

Recall �̂n := nû>
�
�̂ + 
nI

��1
û.

Let NFSIC2(X ;Y ) := �n := nu>��1u.

Theorem 3 (A lower bound on the test power).

1 With some conditions, the test power PH1

�
�̂n � T�

�
� L(�n) where

L(�n) = 1� 62e��1
2
n (�n�T�)2=n � 2e�b0:5nc(�n�T�)2=[�2n2]

� 2e�[(�n�T�)
n (n�1)=3��3n�c3
2
nn(n�1)]

2
=[�4n2(n�1)];

where �1; : : : ; �4; c3 > 0 are constants.

2 For large n, L(�n) is increasing in �n .

Set test locations and Gaussian widths = argmaxL(�n) = argmax�n
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Optimization Objective = Power Lower Bound

Recall �̂n := nû>
�
�̂ + 
nI

��1
û.
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An Estimator of \NFSIC2

�̂n := nû>
�
�̂ + 
nI

��1
û;

J test locations f(vi ;wi )g
J
i=1 � �.

K = [k(vi ;xj )] 2 R
J�n

L = [l(wi ;yj )] 2 R
J�n . (No n � n Gram matrix.)

Estimators

1 û = (K�L)1n
n�1 � (K1n )�(L1n )

n(n�1) .

2 �̂ = ��>

n where � := (K� n�1K1n1>n ) � (L� n�1L1n1>n )� û1>n :

�̂n can be computed in O(J 3 + J 2n + (dx + dy)Jn) time.

Main Point: Linear in n . Cubic in J (small).
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Alternative View of the Witness u(v; w)

The witness u(v;w) can be rewritten as

u(v;w) := �xy(v;w)� �x (v)�y(w)

= Exy[k(x;v)l(y;w)]� Ex[k(x;v)]Ey[l(y;w)];

= covxy[k(x;v); l(y;w)]:

1 Transforming x 7! k(x;v) and y 7! l(y;w) (from Rdy to R).

2 Then, take the covariance.

The kernel transformations turn the linear covariance into a
dependence measure.
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Alternative Form of û(v; w)

Recall \FSIC2 = 1
J
PJ

i=1 û(vi ;wi )
2

Let[�x�y(v;w) be an unbiased estimator of �x (v)�y(w).

[�x�y(v;w) := 1
n(n�1)

Pn
i=1
P

j 6=i k(xi ;v)l(yj ;w).

An unbiased estimator of u(v;w) is

û(v;w) = �̂xy(v;w)�[�x�y(v;w)

=
2

n(n � 1)

X
i<j

h(v;w)((xi ;yi ); (xj ;yj ));

where

h(v;w)((x;y); (x0;y0)) :=
1
2
(k(x;v)� k(x0;v))(l(y;w)� l(y0;w)):

û(v;w) is a one-sample 2nd -order U-statistic, given (v;w).
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Recall \FSIC2 = 1
J
PJ
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Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w)

where �̂xy(v;w) = 1
n
Pn

i=1 k(xi ;v)l(yi ;w).

�̂xy(v;w)

�

�̂x (v)�̂y(w)

=

Witness û(v;w)

HSIC(X ;Y ) = 0 if and only if X and Y are independent.
Test statistic = kûkRKHS (“flatness” of û). Complexity: O(n2).

Key: Can we measure the flatness by other way that costs only O(n)?
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HSIC(X ;Y ) = 0 if and only if X and Y are independent.
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Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate û2(v;w) at only finitely many test locations.

A set of random J locations: f(v1;w1); : : : ; (vJ ;wJ )g

\FSIC2(X ;Y ) = 1
J
PJ

i=1 û2(vi ;wi )

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

Complexity: O((dx + dy)Jn). Linear time.

Can FSIC2(X ;Y ) = 0 even if X and Y are dependent??

No. Population FSIC(X ;Y ) = 0 iff X ? Y , almost surely.
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HSIC vs. FSIC
Recall the witness

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w):

HSIC [Gretton et al., 2005]
= kûkRKHS

(v,w)

witness

Good when difference between
pxy and pxpy is spatially diffuse.

û is almost flat.

FSIC [proposed]
= 1

J
PJ

i=1 û2(vi ;wi )

(v,w)

witness

Good when difference between
pxy and pxpy is local.

û is mostly zero, has many
peaks (feature interaction).
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Toy Problem 1: Independent Gaussians

X � N (0; Idx ) and Y � N (0; Idy).

Independent X ;Y . So, H0 holds.

Set � := 0:05; dx = dy = 250.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC
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Sample size n
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Correct type-I errors (false positive rate).
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Toy Problem 2: Sinusoid

pxy(x ; y) / 1+ sin(!x ) sin(!y) where x ; y 2 (��; �).

Local changes between pxy and pxpy .

Set n = 4000.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC
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ω in 1 + sin(ωx)sin(ωy)
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Main Point: NFSIC can handle well the local changes in the joint space.
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Toy Problem 3: Gaussian Sign

y = jZ j
Qdx

i=1 sign(xi ), where x � N (0; Idy ) and Z � N (0; 1) (noise).
Full interaction among x1; : : : ; xdx .
Need to consider all x1; : : : ; xd to detect the dependency.
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Main Point: NFSIC can handle feature interaction.
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Test Power vs. J

Test power does not always increase with J (number of test locations).

n = 800.
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Accurate estimation of �̂ 2 RJ�J in �̂n = nû>
�
�̂ + 
nI

��1
û becomes

more difficult.

Large J defeats the purpose of a linear-time test.
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Real Problem: Million Song Data
Song (X ) vs. year of release (Y ).

Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].
X 2 R90 contains audio features.
Y 2 R is the year of release.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC
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NFSIC-opt has the highest power among the linear-time tests.
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X 2 R90 contains audio features.
Y 2 R is the year of release.
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Break (X ;Y ) pairs to simulate H0.
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