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What Is Independence Testing?

Let (X, Y) € R% x R% be random vectors following Py .
Given a joint sample {(x;,y;)}7_; ~ Pgy (unknown), test
Hy :Pyy = P, Py,
vs. Hy :Ppy # P Py.

Compute a test statistic 5\n. Reject Hy if 5\n > T, (threshold).
Ta = (1 — a)-quantile of the null distribution.
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Motivations

Modern state-of-the-art test is HSIC [Gretton et al., 2005].

m /' Nonparametric i.e., no assumption on P,. Kernel-based.
m X Slow. Runtime: O(n?) where n = sample size.

m X No systematic way to choose kernels.
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Motivations

Modern state-of-the-art test is HSIC [Gretton et al., 2005].
m /' Nonparametric i.e., no assumption on P,. Kernel-based.
m X Slow. Runtime: O(n?) where n = sample size.

m X No systematic way to choose kernels.

Propose the Finite-Set Independence Criterion (FSIC).

1 Nonparametric.
2 Linear-time. Runtime complexity: O(n). Fast.

3 Tunable i.e., well-defined criterion for parameter tuning.
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Proposal: The Finite-Set Independence Criterion (FSIC)

1 Pick 2 positive definite kernels: k for X, and [ for Y.
Gaussian kernel: k(x,v) = exp (—%)
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1 Pick 2 positive definite kernels: k for X, and [ for Y.
Gaussian kernel: k(x,v) = exp (—”"2_7‘;“2)

9z

2 Pick some feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance
R%* x R% - R xR

FSIC*(X, Y) = coviy yup,, [k(x, V), Iy, w)].

+  Data * (v, w)

correlation: 0.97
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Gaussian kernel: k(x,v) = exp (—”"2_7‘;“2)

9z

2 Pick some feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance

R% x R% - R xR

FSIC*(X, Y) = coviy yup,, [k(x, V), Iy, w)].

+  Data * (v, w)
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1 Pick 2 positive definite kernels: k for X, and [ for Y.
Gaussian kernel: k(x,v) = exp (—”"2_7‘;“2)
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2 Pick some feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance
R%* x R% - R xR

FSIC*(X, Y) = coviy yup,, [k(x, V), Iy, w)].

+  Data * (v, w)

correlation: 0.33

. ; 1.0 ; -
5™ s b
D . / "0 5 .
3 s . :
*‘S'V = i ’ ’
0 0.0 l.--ﬁf”' .« cen
—2.5 0.0 2.5 0.0 0.5 1.0
x k(x,v)

4/10



Proposal: The Finite-Set Independence Criterion (FSIC)

1 Pick 2 positive definite kernels: k for X, and [ for Y.
Gaussian kernel: k(x,v) = exp (—”"2_7‘;“2)
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2 Pick some feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance
R%* x R% - R xR

FSIC*(X, Y) = coviy yup,, [k(x, V), Iy, w)].

*  Data *  (vw) correlation: 0.023

T LO[830 T = R TR

2 . o - e 4 o o...° :"o.. % .‘.‘h

cadting Ve IR I N N

« ° c..‘ ;: o /g e v, o Bl ]

= 0 ".-r.é::%&...:.“'-' @\:‘05 ;o St .‘o‘o <
S e B Y

W ST . S ey e e & o
=2, N 0017 e "l ey
—10 0 10 0.0 0.5 1.0

x k(x,v)

4/10



Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X, and [ for Y.
Gaussian kernel: k(x,v) = exp (—%)

2 Pick some feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance

R% x R% - R xR

FSIC*(X, Y) = coviy yup,, [k(x, V), Iy, w)].
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Proposal: The Finite-Set Independence Criterion (FSIC)

1 Pick 2 positive definite kernels: k for X, and [ for Y.
Gaussian kernel: k(x,v) = exp (—”"2_7‘;“2)

9z

2 Pick some feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance
R%* x R% - R xR

FSIC*(X, Y) = coviy yup,, [k(x, V), Iy, w)].
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General Form of FSIC

FSIC?(X,Y) Zcov(x,y ~ Py [R(X, V), Wy, wi)]

for J features {(Vj,Wj)}jzl € R% x R%,
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General Form of FSIC

FSIC?(X,Y) Zcov(x,y ~ Py [R(X, V), Wy, wi)]

for J features {(Vj,Wj)}jzl € R% x R%,
Proposition 1.
Assume
1 Kernels k and | satisfy some conditions (e.g. Gaussian kernels).

2 Features {(v;,w;)}._, are drawn from a distribution with a density.
Then, for any J > 1,

FSIC(X, Y) =0 if and only if X and Y are independent
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General Form of FSIC

FSIC?(X,Y) Zcov(x,y ~ Py [R(X, V), Wy, wi)]

for J features {(Vj,Wj)}jzl € R% x R%,
Proposition 1.
Assume
1 Kernels k and | satisfy some conditions (e.g. Gaussian kernels).

2 Features {(v;,w;)}._, are drawn from a distribution with a density.
Then, for any J > 1,

FSIC(X, Y) =0 if and only if X and Y are independent

Under Hp : Py = PPy,
'nl-"‘/SiE2 ~ weighted sum of J dependent x? variables.

m Difficult to get (1 — a)-quantile for the threshold.
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Normalized FSIC (NFSIC)

.
m Let 11— (c/on[k(x, Vl),l(y,wl)],...,c/oT/'[k(X,vj),l(y,WJ)]) € R,

m Then, FSIC? = LaT4.
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~
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with a regularization parameter v, > 0.

m X;; = covariance of 4; and 4.
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Normalized FSIC (NFSIC)

.
m Let 11— (EC)Tf[k(x, vl),z(y,wl)],...,saf[k(x,vj),z(y,wj)]) € R,

m Then, FSIC? al

1A -~
7 u.

~

NFSIC2(X, V) = An = nit' (54 y0) 4,
with a regularization parameter v, > 0.
[ i}ij = covariance of %; and ;.

Theorem 1 (NFSIC test is consistent).
Assume v, — 0, and same conditions on k and [ as before.
1 Under Hy, A, 4 x?(J) as n — 00. Easy to get threshold T,.

2 Under Hy, P(reject Hy) — 1 as n — 0.

m Complexity: O(J%+ J%n + (d; + dy)Jn). Only need small J.
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Tuning Features and Kernels

m Split the data into training (tr) and test (te) sets.
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Tuning Features and Kernels

m Split the data into training (tr) and test (te) sets.

Procedure:
1 Choose {(v;,w;)}/_, and Gaussian widths by maximizing 5\2“) (i.e.,
computed on the training set). Gradient ascent.

2 Reject Hy if PYEN (1 — a)-quantile of x2(J).

m Splitting avoids overfitting.
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Tuning Features and Kernels

m Split the data into training (tr) and test (te) sets.

Procedure:
1 Choose {(v;,w;)}/_, and Gaussian widths by maximizing 5\2“) (i.e.,
computed on the training set). Gradient ascent.

2 Reject Hy if PYEN (1 — a)-quantile of x2(J).

m Splitting avoids overfitting.

Theorem 2.

m This procedure increases a lower bound on P(reject Hy | Hy true)
(test power).

m Asymptotically, false rejection rate s a.
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Simulation Settings

m Gaussian kernels k(x,x') = exp (—w) for both X and Y.

202
Method Description
1 NFSIC-opt NFSIC with optimization. O(n).
QHSIC

-of-the- 2
[Gretton et al., 2005] State-of-the-art HSIC. O(n?).

Lopez-Paz et al., 2013

|'—' NFSIC-opt =.-8 NFSIC-med e—e QHSIC *»—= NyHSIC +— FHSIC +~— RDC

m J =10 in NFSIC.
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Youtube Video (X)) vs. Caption (Y).

m X € R?000; Risher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].

m Y € R'878: Bag of words. Term frequency.

m a=0.01.

e 9
o

Test power
o©
D

%00 4000 6000 8000
Sample size n

m For large n, NFSIC is comparable to HSIC.
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Youtube Video (X) vs. Caption (Y).

m X € R?000: RFisher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].

m Y € R'878: Bag of words. Term frequency.

m o= 0.01.

0.018
0.016}
_ 0.014}
©0.012f
(0]
2 0.010
€ 0.008
S [
P 0.006
0.004}

Exchange

Hjp true.

0-09%60 4000 6000 8000
Sample size n

m For large n, NFSIC is comparable to HSIC.

(X, Y) pairs.
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Conclusions

m Proposed The Finite Set Independence Criterion (FSIC).
m Independece test based on FSIC is

1 nonparametric,
2 linear-time,
3 adaptive (parameters automatically tuned).

An Adaptive Test of Independence with Analytic Kernel Embeddings
Wittawat Jitkrittum, Zoltdn Szabd, Arthur Gretton
https://arxiv.org/abs/1610.04782

(to appear in ICML 2017)

m Python code: https://github.com/wittawatj/fsic-test
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Questions?

Thank you
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Requirements on the Kernels

Definition 1 (Analytic kernels).

k: X x X — R is said to be analytic if for all x € X, v — k(x, V) is a real
analytic function on X.

m Analytic: Taylor series about xg converges for all xg € X.

B — k is infinitely differentiable.
Definition 2 (Characteristic kernels).
m Let up(v) :=E,uplk(z, v)].

k is said to be characteristic if up is unique for distinct P. Equivalently,
P — pup is injective.

Space of distributions RKHS
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Optimization Objective = Power Lower Bound

~ N -1
= Recall &, := nii' (z: + fan) .
m Let NFSIC?(X,Y):= A, :=nu' 3t
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L(A\p) = 1 — 626720 =Ta)?/n _ 9g=1050]On=Ta)?/[€20?]

_ 9o~ [ Ta)m(n—1)/3—Esn—car3n(n—1)]/[€an?(n—1)]

where &1, ...,&4, c3 > 0 are constants.

2 For large n, L(A,) s increasing in A,.

14/10



Optimization Objective = Power Lower Bound

m Recall 5\n = nla ( )
m Let NFSIC?(X,Y):= A, :=nu' 3t

Theorem 3 (A lower bound on the test power).

1 With some conditions, the test power Py, (5\n > Ta> > L(A,) where

L(Ay) = 1 — 6217200 =Te)?/n _ 9=10.57](An—Ta)?/[¢2n’]

_ 9o~ [ Ta)m(n—1)/3—Esn—car3n(n—1)]/[€an?(n—1)]

where &1, ...,&4, c3 > 0 are constants.

2 For large n, L(A,) s increasing in A,.

Set test locations and Gaussian widths = argmax L(A,) = argmax A,
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An Estimator of N?SI\C2

An = ni’ (z: + fan)*l L,
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m J test locations {(v;, w:)}_; ~ 7.
u K = [k(vi,x;)] € RI¥
m L =[l(w;,y;)] € R7*". (No n x n Gram matrix.)
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An Estimator of N?SI\C2
An = ni’ (z: + fan)*l L,

m J test locations {(v;, w:)}_; ~ 7.
u K = [k(vi,x;)] € RI¥
m L =[l(w;,y;)] € R7*". (No n x n Gram matrix.)

Estimators
. (KoL)l, (K1,)o(L1,)
tu="—-—1 — n(n—1) °

2 3= % where I' .= (K — n'K1,1))o (L — n 'L1,1)) — a1, .

m )\, can be computed in O(J% + J?n + (d; + dy)Jn) time.

Main Point: Linear in n. Cubic in J (small).
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Alternative View of the Witness u(v, w)

The witness u(v, w) can be rewritten as

u(v, W) 1= phay (v, W) — pa (V) gy (W)
= By [k, V) Uy, w)] — B[k, v)]Ey Ly, W),
= COny[k(X» v), iy, W)]
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Alternative View of the Witness u(v, w)

The witness u(v, w) can be rewritten as

u(V, W) = fhoy(V, W) — fig (V) sy (W)
:Exy[k( v)i(y, w)] — EX[k(X:V)]Ey[Z(Y1W)]’

= covxy[k(x, ), iy, W)].

1 Transforming x — k(x,v) and y — I(y,w) (from R% to R).

2 Then, take the covariance.

The kernel transformations turn the linear covariance into a
dependence measure.
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Alternative Form of 4(v, w)

m Recall FSIC? = %Z;]:l vy, wy)?
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Alternative Form of 4(v, w)

m Recall FSIC? = %Z;]:l vy, wy)?
m Let fzuy (v, w) be an unbiased estimator of pg(v)uy(Ww).
B fofiy(v, W) = ﬁ 211 2j#i k(xqi, v)Uy;, w).
® An unbiased estimator of u(v,w) is
a(v,w) = /:Lzy(V, w) — /-Z/J'\y(vv w)

= ﬁ Z h(V,w)((Xi,yi)’ (X]1YJ)),

1<J

where

h’(v,w)((x) y)) (XI’ y/)) = %(k:(x, V) - k(xl7 V))U(Y) W) - l(y/: W))

m (v, w) is a one-sample 2"-order U-statistic, given (v, w).
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Independence Test with HSIC [Gretton et al., 2005]

m Hilbert-Schmidt Independence Criterion.
HSIC(X, Y) = MMD( Py, Pz Py) = ||u||rkHus
(need two kernels: k for X, and [ for Y).
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m Hilbert-Schmidt Independence Criterion.
HSIC(X, Y) = MMD( P4y, P Py) = ||u|lrkus

(need two kernels: k for X, and [ for Y).
m Empirical witness:

~

’&(V, W) = ,E":Ey(v: W) - ﬂx(v):u'y(w)

where figy (v, W) = 7 320y k(xi, v)U{ys, W).

fozy(V, W) for (V) oy (W) Witness (v, w)
m HSIC(X, Y) =0 if and only if X and Y are independent.
m Test statistic = ||%||rkus (“fatness” of 4). Complexity: O(n?).

Key: Can we measure the flatness by other way that costs only O(n)?
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Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate %?(v,w) at only finitely many test locations.

m A set of random J locations: {(vi,w1),...,(vs, W)}
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m Can FSIC?(X, Y) =0 even if X and Y are dependent??
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Idea: Evaluate %?(v,w) at only finitely many test locations.

m A set of random J locations: {(vi,w1),...,(vs, W)}
= FSIC(X, V) = 1 20, @2(vi, wi)
0.024
0.021
- 0.018
0.015
0.012
0.009
- 0.006
0.003
0.000
m Complexity: O((d; + dy)Jn). Linear time.
m Can FSIC?(X, Y) =0 even if X and Y are dependent??
m No. Population FSIC(X, Y)=0iff X 1 Y, almost surely.
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HSIC vs. FSIC

Recall the witness

UV, W) = flay (v, W) = (V) iy (w).

HSIC [Gretton et al., 2005]
= [|%/[rxns

— witness

(v, w)

Good when difference between
Dy and p.ypy is spatially diffuse.

m 4 is almost flat.

FSIC [proposed|
= % E:L]Zl ﬁZ(Vi, Wi)

— witness

(v, w)

*

Fede
Good when difference between
Pzy and pgypy is local.

m 4 is mostly zero, has many
peaks (feature interaction).
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Toy Problem 1: Independent Gaussians

m X ~N(0,Iz)and Y ~N(0,Ig).
m Independent X, Y. So, Hp holds.
m Set o :=0.05, d; = dy = 250.
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Toy Problem 1: Independent Gaussians

m X ~N(0,Iz)and Y ~N(0,Ig).
m Independent X, Y. So, Hp holds.
m Set o :=0.05, d; = dy = 250.

|-—- NFSIC-opt  ®-® NFSIC-med e— QHSIC  *—=+ NyHSIC e—e FHSIC

+~— RDC

0.09
0.08}
5 0.07}
@ 0.06}
§0.05 &
= 0.04}
0.03} .
0.02 s
103 10% 10°
Sample size n

m Correct type-I errors (false positive rate).
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Toy Problem 1: Independent Gaussians

m X ~N(0,Iz)and Y ~N(0,Ig).
m Independent X, Y. So, Hp holds.
m Set o :=0.05, d; = dy = 250.

|*—= NFSIC-opt =-= NFSIG-med e QHSIC +—~+ NyHSIC e— FHSIC +— RDC]|
0.09
0.08¢

5 0.07}

@ 0.06}

§:0.05 J

~ 0.04}
0.03}
0.02 : £ >

103 10* 10° 103 10* 10°

Sample size n Sample size n

103}

m Correct type-I errors (false positive rate).
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Toy Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, ).
m Local changes between p;, and p;py.
m Set n = 4000.
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Toy Problem 2: Sinusoid

B poy(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, ).
m Local changes between p,y; and p;py.
m Set n = 4000.

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
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Toy Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, 7).
m Local changes between p;, and p;py.
m Set n = 4000.

2 00
1. ®®

3 2 1

T
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Toy

Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, 7).

Local changes between p;, and p,py.

Set n = 4000.
. ' _w=3.00 .
e ®e®
o @®e®@e
e @®e®
L X K N X
, D@ e ®
‘3"3. 2. 1. 6.i ‘z'
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Toy Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, 7).

Local changes between p;, and p,py.

Set n = 4000.
w=4.00

KX KX KX K
N KN KN KN )

L K N XN X N X J
Ly KX KX KX J
[ KN KN KN X
RCE KX KX KX J
=2k K N K N X N X T
MI I XTI KX )
-3 -2 -1 0 1 2 3

8
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Toy Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, 7).
m Local changes between p;, and p;py.
m Set n = 4000.

|-—- NFSIC-opt  =-= NFSIC-med e— QHSIC =+ + NyHSIC e—e FHSIC  +— RDC|
1.0 . 3F . w=4.00 -
L KX KX K)
0.8} el N KN KN N N J
5, | STe@e®e®e
2o [ eeeeceee®
5o ®@c@c@c@e
. TG0 e0e®e®
0. = KX KN KX K ¥
0.0 ' ' — A KX KN KX )
1 2 3 4 5 6 -3 -2 -1 o0 1 2 3

w in 1+ sin(wz)sin(wy) x

Main Point: NFSIC can handle well the local changes in the joint space. I
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Toy Problem 3: Gaussian Sign

m y = |Z|[]%, sign(z;), where x ~ N(0, I,) and Z ~ N(0,1) (noise).
m Full interaction among z,..., z4,.

m Need to consider all z3, ..

1.0

Test power
© o o ©
N H [e)} [0}

o
(=]

‘103

., 4 to detect the dependency.

Sample size n

NFSIC-opt
NFSIC-med
QHSIC
NyHSIC
FHSIC

RDC
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Toy Problem 3: Gaussian Sign

m y = |Z|[]%, sign(z;), where x ~ N(0, I,) and Z ~ N(0,1) (noise).

m Full interaction among z,..., z4,.

m Need to consider all zi, ..., z; to detect the dependency.

1.0

=—=a NFSIC-opt

08 == NFSIC-med
% 0.6 —e QHSIC
a =  NyHSIC
g0 — FHSIC

0.2 +~—— RDC

0-03 10° 10°

Sample size n

Main Point: NFSIC can handle feature interaction. I
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Test Power vs. J

m Test power does not always increase with J (number of test locations).
m n = 800.

w= 200 1.0
3F T T T |
Yee@e .
L | @
oG e® -
(=}
= O 3‘
[
rtTe@®@e® -
@ . ®@e® -
—3L J i i i i i
-3 2 1 2 3 100 200 300 400 500 600

m Accurate estimation of 33 € R/*7 in \,, = ni1 ' (f} + ’an) 1l becomes
more difficult.

m Large J defeats the purpose of a linear-time test.
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Real Problem: Million Song Data
Song (X)) vs. year of release (Y').

m Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].

m X € R contains audio features.

m Y € R is the year of release.
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Real Problem: Million Song Data
Song (X)) vs. year of release (Y').

m Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].

m X € R contains audio features.

m Y € R is the year of release.

|l—- NFSIC-opt =.-8 NFSIC-med e—e QHSIC »—=+ NyHSIC +—+ FHSIC ~— RDC

0.025 — : ; 10— ———
0.020} 0.9y
— — 0.8’
8 [
£ 0.015 §0-7'
> 0.6}
g 0.010 5
e =050
0.005¢+ 0.4}
0.3 « |
0.000L ‘ ‘ ‘ ‘ ‘
500 1000 1500 2000 500 1000 1500 2000
Sample size n Sample size n

B Break (X, Y) pairs to simulate Hp.

NFSIC-opt has the highest power among the linear-time tests.
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