
The Finite-Set Independence Criterion (FSIC)

Wittawat Jitkrittum Zoltán Szabó Arthur Gretton

Gatsby Unit
University College London

wittawat@gatsby.ucl.ac.uk

3rd UCL Workshop on the Theory of Big Data

28 June 2017

1/10

wittawat@gatsby.ucl.ac.uk


What Is Independence Testing?

Let (X ;Y ) 2 Rdx � Rdy be random vectors following Pxy .
Given a joint sample f(xi ;yi )g

n
i=1 � Pxy (unknown), test

H0 :Pxy = PxPy ;

vs. H1 :Pxy 6= PxPy :

Compute a test statistic �̂n . Reject H0 if �̂n > T� (threshold).
T� = (1� �)-quantile of the null distribution.

0 25 50 75
λ̂n

PH0
(λ̂n)

Tα

2/10



What Is Independence Testing?

Let (X ;Y ) 2 Rdx � Rdy be random vectors following Pxy .
Given a joint sample f(xi ;yi )g

n
i=1 � Pxy (unknown), test

H0 :Pxy = PxPy ;

vs. H1 :Pxy 6= PxPy :

Compute a test statistic �̂n . Reject H0 if �̂n > T� (threshold).
T� = (1� �)-quantile of the null distribution.

0 25 50 75
λ̂n

PH0
(λ̂n)

Tα

2/10



What Is Independence Testing?

Let (X ;Y ) 2 Rdx � Rdy be random vectors following Pxy .
Given a joint sample f(xi ;yi )g

n
i=1 � Pxy (unknown), test

H0 :Pxy = PxPy ;

vs. H1 :Pxy 6= PxPy :

Compute a test statistic �̂n . Reject H0 if �̂n > T� (threshold).
T� = (1� �)-quantile of the null distribution.

0 25 50 75
λ̂n

PH0
(λ̂n)

Tα

2/10



Motivations

Modern state-of-the-art test is HSIC [Gretton et al., 2005].

3 Nonparametric i.e., no assumption on Pxy . Kernel-based.

7 Slow. Runtime: O(n2) where n = sample size.

7 No systematic way to choose kernels.

Propose the Finite-Set Independence Criterion (FSIC).

1 Nonparametric.

2 Linear-time. Runtime complexity: O(n). Fast.

3 Tunable i.e., well-defined criterion for parameter tuning.

3/10



Motivations

Modern state-of-the-art test is HSIC [Gretton et al., 2005].

3 Nonparametric i.e., no assumption on Pxy . Kernel-based.

7 Slow. Runtime: O(n2) where n = sample size.

7 No systematic way to choose kernels.

Propose the Finite-Set Independence Criterion (FSIC).

1 Nonparametric.

2 Linear-time. Runtime complexity: O(n). Fast.

3 Tunable i.e., well-defined criterion for parameter tuning.

3/10



Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�
kx�vk2

2�2
x

�
.

2 Pick some feature (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

l(
y
,w

)

correlation: 0.087

4/10



Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�
kx�vk2

2�2
x

�
.

2 Pick some feature (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

l(
y
,w

)

correlation: 0.087

4/10



Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�
kx�vk2

2�2
x

�
.

2 Pick some feature (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

l(
y
,w

)

correlation: 0.087

4/10



Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�
kx�vk2

2�2
x

�
.

2 Pick some feature (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :

−2.5 0.0 2.5
x

0

5

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

1.0
l(
y
,w

)
correlation: 0.97

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

l(
y
,w

)

correlation: 0.087

4/10



Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�
kx�vk2

2�2
x

�
.

2 Pick some feature (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :

−2.5 0.0 2.5
x

0

5

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

1.0
l(
y
,w

)
correlation: -0.47

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

l(
y
,w

)

correlation: 0.087

4/10



Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�
kx�vk2

2�2
x

�
.

2 Pick some feature (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :

−2.5 0.0 2.5
x

0

5

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

1.0
l(
y
,w

)
correlation: 0.33

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

l(
y
,w

)

correlation: 0.087

4/10



Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�
kx�vk2

2�2
x

�
.

2 Pick some feature (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

1.0
l(
y
,w

)

correlation: 0.023

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

l(
y
,w

)

correlation: 0.087

4/10



Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�
kx�vk2

2�2
x

�
.

2 Pick some feature (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

1.0
l(
y
,w

)

correlation: 0.025

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

l(
y
,w

)

correlation: 0.087

4/10



Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�
kx�vk2

2�2
x

�
.

2 Pick some feature (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

l(
y
,w

)

correlation: 0.087

4/10



General Form of FSIC

FSIC2(X ;Y ) =
1
J

JX
j=1

cov2
(x;y)�Pxy

[k(x;vj ); l(y;wj )] ;

for J features f(vj ;wj )g
J
j=1 2 R

dx � Rdy .

Proposition 1.
Assume

1 Kernels k and l satisfy some conditions (e.g. Gaussian kernels).

2 Features f(vi ;wi )g
J
i=1 are drawn from a distribution with a density.

Then, for any J � 1,
FSIC(X ;Y ) = 0 if and only if X and Y are independent

Under H0 : Pxy = PxPy ,

n\FSIC2 � weighted sum of J dependent �2 variables.

Difficult to get (1� �)-quantile for the threshold.

5/10



General Form of FSIC

FSIC2(X ;Y ) =
1
J

JX
j=1

cov2
(x;y)�Pxy

[k(x;vj ); l(y;wj )] ;

for J features f(vj ;wj )g
J
j=1 2 R

dx � Rdy .

Proposition 1.
Assume

1 Kernels k and l satisfy some conditions (e.g. Gaussian kernels).

2 Features f(vi ;wi )g
J
i=1 are drawn from a distribution with a density.

Then, for any J � 1,
FSIC(X ;Y ) = 0 if and only if X and Y are independent

Under H0 : Pxy = PxPy ,

n\FSIC2 � weighted sum of J dependent �2 variables.

Difficult to get (1� �)-quantile for the threshold.

5/10



General Form of FSIC

FSIC2(X ;Y ) =
1
J

JX
j=1

cov2
(x;y)�Pxy

[k(x;vj ); l(y;wj )] ;

for J features f(vj ;wj )g
J
j=1 2 R

dx � Rdy .

Proposition 1.
Assume

1 Kernels k and l satisfy some conditions (e.g. Gaussian kernels).

2 Features f(vi ;wi )g
J
i=1 are drawn from a distribution with a density.

Then, for any J � 1,
FSIC(X ;Y ) = 0 if and only if X and Y are independent

Under H0 : Pxy = PxPy ,

n\FSIC2 � weighted sum of J dependent �2 variables.

Difficult to get (1� �)-quantile for the threshold.

5/10



Normalized FSIC (NFSIC)

Let û :=

�dcov[k(x;v1); l(y;w1)]; : : : ;dcov[k(x;vJ ); l(y;wJ )]

�>
2 RJ .

Then, \FSIC2 = 1
J û>û.

\NFSIC2(X ;Y ) = �̂n := nû>
�
�̂ + 
nI

�
�1û;

with a regularization parameter 
n � 0.

�̂ij = covariance of ûi and ûj .

Theorem 1 (NFSIC test is consistent).
Assume 
n ! 0, and same conditions on k and l as before.

1 Under H0, �̂n
d
! �2(J ) as n !1. Easy to get threshold T�.

2 Under H1, P(reject H0)! 1 as n !1.

Complexity: O(J 3 + J 2n + (dx + dy)Jn). Only need small J .

6/10



Normalized FSIC (NFSIC)

Let û :=

�dcov[k(x;v1); l(y;w1)]; : : : ;dcov[k(x;vJ ); l(y;wJ )]

�>
2 RJ .

Then, \FSIC2 = 1
J û>û.

\NFSIC2(X ;Y ) = �̂n := nû>
�
�̂ + 
nI

�
�1û;

with a regularization parameter 
n � 0.

�̂ij = covariance of ûi and ûj .

Theorem 1 (NFSIC test is consistent).
Assume 
n ! 0, and same conditions on k and l as before.

1 Under H0, �̂n
d
! �2(J ) as n !1. Easy to get threshold T�.

2 Under H1, P(reject H0)! 1 as n !1.

Complexity: O(J 3 + J 2n + (dx + dy)Jn). Only need small J .

6/10



Normalized FSIC (NFSIC)

Let û :=

�dcov[k(x;v1); l(y;w1)]; : : : ;dcov[k(x;vJ ); l(y;wJ )]

�>
2 RJ .

Then, \FSIC2 = 1
J û>û.

\NFSIC2(X ;Y ) = �̂n := nû>
�
�̂ + 
nI

�
�1û;

with a regularization parameter 
n � 0.

�̂ij = covariance of ûi and ûj .

Theorem 1 (NFSIC test is consistent).
Assume 
n ! 0, and same conditions on k and l as before.

1 Under H0, �̂n
d
! �2(J ) as n !1. Easy to get threshold T�.

2 Under H1, P(reject H0)! 1 as n !1.

Complexity: O(J 3 + J 2n + (dx + dy)Jn). Only need small J .

6/10



Normalized FSIC (NFSIC)

Let û :=

�dcov[k(x;v1); l(y;w1)]; : : : ;dcov[k(x;vJ ); l(y;wJ )]

�>
2 RJ .

Then, \FSIC2 = 1
J û>û.

\NFSIC2(X ;Y ) = �̂n := nû>
�
�̂ + 
nI

�
�1û;

with a regularization parameter 
n � 0.

�̂ij = covariance of ûi and ûj .

Theorem 1 (NFSIC test is consistent).
Assume 
n ! 0, and same conditions on k and l as before.

1 Under H0, �̂n
d
! �2(J ) as n !1. Easy to get threshold T�.

2 Under H1, P(reject H0)! 1 as n !1.

Complexity: O(J 3 + J 2n + (dx + dy)Jn). Only need small J .

6/10



Normalized FSIC (NFSIC)

Let û :=

�dcov[k(x;v1); l(y;w1)]; : : : ;dcov[k(x;vJ ); l(y;wJ )]

�>
2 RJ .

Then, \FSIC2 = 1
J û>û.

\NFSIC2(X ;Y ) = �̂n := nû>
�
�̂ + 
nI

�
�1û;

with a regularization parameter 
n � 0.

�̂ij = covariance of ûi and ûj .

Theorem 1 (NFSIC test is consistent).
Assume 
n ! 0, and same conditions on k and l as before.

1 Under H0, �̂n
d
! �2(J ) as n !1. Easy to get threshold T�.

2 Under H1, P(reject H0)! 1 as n !1.

Complexity: O(J 3 + J 2n + (dx + dy)Jn). Only need small J .

6/10



Tuning Features and Kernels

Split the data into training (tr) and test (te) sets.

Procedure:

1 Choose f(vi ;wi )g
J
i=1 and Gaussian widths by maximizing �̂

(tr)
n (i.e.,

computed on the training set). Gradient ascent.

2 Reject H0 if �̂(te)n > (1� �)-quantile of �2(J ).

Splitting avoids overfitting.

Theorem 2.
This procedure increases a lower bound on P(reject H0 j H1 true)
(test power).

Asymptotically, false rejection rate is �.

7/10



Tuning Features and Kernels

Split the data into training (tr) and test (te) sets.

Procedure:

1 Choose f(vi ;wi )g
J
i=1 and Gaussian widths by maximizing �̂

(tr)
n (i.e.,

computed on the training set). Gradient ascent.

2 Reject H0 if �̂(te)n > (1� �)-quantile of �2(J ).

Splitting avoids overfitting.

Theorem 2.
This procedure increases a lower bound on P(reject H0 j H1 true)
(test power).

Asymptotically, false rejection rate is �.

7/10



Tuning Features and Kernels

Split the data into training (tr) and test (te) sets.

Procedure:

1 Choose f(vi ;wi )g
J
i=1 and Gaussian widths by maximizing �̂

(tr)
n (i.e.,

computed on the training set). Gradient ascent.

2 Reject H0 if �̂(te)n > (1� �)-quantile of �2(J ).

Splitting avoids overfitting.

Theorem 2.
This procedure increases a lower bound on P(reject H0 j H1 true)
(test power).

Asymptotically, false rejection rate is �.

7/10



Simulation Settings

Gaussian kernels k(x;x0) = exp
�
�
kx�x0k22

2�2
x

�
for both X and Y .

Method Description

1 NFSIC-opt NFSIC with optimization. O(n).

2
QHSIC
[Gretton et al., 2005]

State-of-the-art HSIC. O(n2).

3 NFSIC-med NFSIC with random features.
4 NyHSIC Linear-time HSIC with Nystrom approx.
5 FHSIC Linear-time HSIC with random Fourier features

6
RDC
[Lopez-Paz et al., 2013]

Canonical Correlation Analysis with cosine basis.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

J = 10 in NFSIC.

8/10



Youtube Video (X ) vs. Caption (Y ).

X 2 R2000: Fisher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].
Y 2 R1878: Bag of words. Term frequency.
� = 0:01.

2000 4000 6000 8000
Sample size n

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

QHSIC

For large n , NFSIC is comparable to HSIC.

9/10



Youtube Video (X ) vs. Caption (Y ).

X 2 R2000: Fisher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].
Y 2 R1878: Bag of words. Term frequency.
� = 0:01.

2000 4000 6000 8000
Sample size n

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

QHSIC

Proposed
NFSIC

For large n , NFSIC is comparable to HSIC.

9/10



Youtube Video (X ) vs. Caption (Y ).

X 2 R2000: Fisher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].
Y 2 R1878: Bag of words. Term frequency.
� = 0:01.

2000 4000 6000 8000
Sample size n

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

T
y
p
e
-I

 e
rr

o
r

Exchange
(X ; Y ) pairs.

H0 true.

For large n , NFSIC is comparable to HSIC.

9/10



Conclusions

Proposed The Finite Set Independence Criterion (FSIC).
Independece test based on FSIC is

1 nonparametric,
2 linear-time,
3 adaptive (parameters automatically tuned).

An Adaptive Test of Independence with Analytic Kernel Embeddings
Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton
https://arxiv.org/abs/1610.04782
(to appear in ICML 2017)

Python code: https://github.com/wittawatj/fsic-test

10/10

https://arxiv.org/abs/1610.04782
https://github.com/wittawatj/fsic-test


Questions?

Thank you

11/10



Reference
Coauthors:

Zoltán Szabó
École Polytechnique

Arthur Gretton
Gatsby Unit, UCL

An Adaptive Test of Independence with Analytic Kernel Embeddings
Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton
https://arxiv.org/abs/1610.04782
(to appear in ICML 2017)

Python code: https://github.com/wittawatj/fsic-test

12/10

https://arxiv.org/abs/1610.04782
https://github.com/wittawatj/fsic-test


Requirements on the Kernels
Definition 1 (Analytic kernels).
k : X � X ! R is said to be analytic if for all x 2 X , v ! k(x;v) is a real
analytic function on X .

Analytic: Taylor series about x0 converges for all x0 2 X .

=) k is infinitely differentiable.

Definition 2 (Characteristic kernels).
Let �P (v) := Ez�P [k(z;v)].

k is said to be characteristic if �P is unique for distinct P . Equivalently,
P 7! �P is injective.

P

Q
}MMD(P,Q)MMD(P,Q)

RKHSSpace of distributions

µP

µQ

13/10



Optimization Objective = Power Lower Bound

Recall �̂n := nû>
�
�̂ + 
nI

��1
û.

Let NFSIC2(X ;Y ) := �n := nu>��1u.

Theorem 3 (A lower bound on the test power).

1 With some conditions, the test power PH1

�
�̂n � T�

�
� L(�n) where

L(�n) = 1� 62e��1
2
n (�n�T�)2=n � 2e�b0:5nc(�n�T�)2=[�2n2]

� 2e�[(�n�T�)
n (n�1)=3��3n�c3
2
nn(n�1)]

2
=[�4n2(n�1)];

where �1; : : : ; �4; c3 > 0 are constants.

2 For large n, L(�n) is increasing in �n .

Set test locations and Gaussian widths = argmaxL(�n) = argmax�n

14/10



Optimization Objective = Power Lower Bound

Recall �̂n := nû>
�
�̂ + 
nI

��1
û.

Let NFSIC2(X ;Y ) := �n := nu>��1u.

Theorem 3 (A lower bound on the test power).

1 With some conditions, the test power PH1

�
�̂n � T�

�
� L(�n) where

L(�n) = 1� 62e��1
2
n (�n�T�)2=n � 2e�b0:5nc(�n�T�)2=[�2n2]

� 2e�[(�n�T�)
n (n�1)=3��3n�c3
2
nn(n�1)]

2
=[�4n2(n�1)];

where �1; : : : ; �4; c3 > 0 are constants.

2 For large n, L(�n) is increasing in �n .

Set test locations and Gaussian widths = argmaxL(�n) = argmax�n

14/10



Optimization Objective = Power Lower Bound

Recall �̂n := nû>
�
�̂ + 
nI

��1
û.

Let NFSIC2(X ;Y ) := �n := nu>��1u.

Theorem 3 (A lower bound on the test power).

1 With some conditions, the test power PH1

�
�̂n � T�

�
� L(�n) where

L(�n) = 1� 62e��1
2
n (�n�T�)2=n � 2e�b0:5nc(�n�T�)2=[�2n2]

� 2e�[(�n�T�)
n (n�1)=3��3n�c3
2
nn(n�1)]

2
=[�4n2(n�1)];

where �1; : : : ; �4; c3 > 0 are constants.

2 For large n, L(�n) is increasing in �n .

Set test locations and Gaussian widths = argmaxL(�n) = argmax�n

14/10



Optimization Objective = Power Lower Bound

Recall �̂n := nû>
�
�̂ + 
nI

��1
û.

Let NFSIC2(X ;Y ) := �n := nu>��1u.

Theorem 3 (A lower bound on the test power).

1 With some conditions, the test power PH1

�
�̂n � T�

�
� L(�n) where

L(�n) = 1� 62e��1
2
n (�n�T�)2=n � 2e�b0:5nc(�n�T�)2=[�2n2]

� 2e�[(�n�T�)
n (n�1)=3��3n�c3
2
nn(n�1)]

2
=[�4n2(n�1)];

where �1; : : : ; �4; c3 > 0 are constants.

2 For large n, L(�n) is increasing in �n .

Set test locations and Gaussian widths = argmaxL(�n) = argmax�n

14/10



An Estimator of \NFSIC2

�̂n := nû>
�
�̂ + 
nI

��1
û;

J test locations f(vi ;wi )g
J
i=1 � �.

K = [k(vi ;xj )] 2 R
J�n

L = [l(wi ;yj )] 2 R
J�n . (No n � n Gram matrix.)

Estimators

1 û = (K�L)1n
n�1 � (K1n )�(L1n )

n(n�1) .

2 �̂ = ��>

n where � := (K� n�1K1n1>n ) � (L� n�1L1n1>n )� û1>n :

�̂n can be computed in O(J 3 + J 2n + (dx + dy)Jn) time.

Main Point: Linear in n . Cubic in J (small).

15/10



An Estimator of \NFSIC2

�̂n := nû>
�
�̂ + 
nI

��1
û;

J test locations f(vi ;wi )g
J
i=1 � �.

K = [k(vi ;xj )] 2 R
J�n

L = [l(wi ;yj )] 2 R
J�n . (No n � n Gram matrix.)

Estimators

1 û = (K�L)1n
n�1 � (K1n )�(L1n )

n(n�1) .

2 �̂ = ��>

n where � := (K� n�1K1n1>n ) � (L� n�1L1n1>n )� û1>n :

�̂n can be computed in O(J 3 + J 2n + (dx + dy)Jn) time.

Main Point: Linear in n . Cubic in J (small).

15/10



An Estimator of \NFSIC2

�̂n := nû>
�
�̂ + 
nI

��1
û;

J test locations f(vi ;wi )g
J
i=1 � �.

K = [k(vi ;xj )] 2 R
J�n

L = [l(wi ;yj )] 2 R
J�n . (No n � n Gram matrix.)

Estimators

1 û = (K�L)1n
n�1 � (K1n )�(L1n )

n(n�1) .

2 �̂ = ��>

n where � := (K� n�1K1n1>n ) � (L� n�1L1n1>n )� û1>n :

�̂n can be computed in O(J 3 + J 2n + (dx + dy)Jn) time.

Main Point: Linear in n . Cubic in J (small).

15/10



Alternative View of the Witness u(v; w)

The witness u(v;w) can be rewritten as

u(v;w) := �xy(v;w)� �x (v)�y(w)

= Exy[k(x;v)l(y;w)]� Ex[k(x;v)]Ey[l(y;w)];

= covxy[k(x;v); l(y;w)]:

1 Transforming x 7! k(x;v) and y 7! l(y;w) (from Rdy to R).

2 Then, take the covariance.

The kernel transformations turn the linear covariance into a
dependence measure.

16/10



Alternative View of the Witness u(v; w)

The witness u(v;w) can be rewritten as

u(v;w) := �xy(v;w)� �x (v)�y(w)

= Exy[k(x;v)l(y;w)]� Ex[k(x;v)]Ey[l(y;w)];

= covxy[k(x;v); l(y;w)]:

1 Transforming x 7! k(x;v) and y 7! l(y;w) (from Rdy to R).

2 Then, take the covariance.

The kernel transformations turn the linear covariance into a
dependence measure.

16/10



Alternative Form of û(v; w)

Recall \FSIC2 = 1
J
PJ

i=1 û(vi ;wi )
2

Let[�x�y(v;w) be an unbiased estimator of �x (v)�y(w).

[�x�y(v;w) := 1
n(n�1)

Pn
i=1
P

j 6=i k(xi ;v)l(yj ;w).

An unbiased estimator of u(v;w) is

û(v;w) = �̂xy(v;w)�[�x�y(v;w)

=
2

n(n � 1)

X
i<j

h(v;w)((xi ;yi ); (xj ;yj ));

where

h(v;w)((x;y); (x0;y0)) :=
1
2
(k(x;v)� k(x0;v))(l(y;w)� l(y0;w)):

û(v;w) is a one-sample 2nd -order U-statistic, given (v;w).

17/10



Alternative Form of û(v; w)

Recall \FSIC2 = 1
J
PJ

i=1 û(vi ;wi )
2

Let[�x�y(v;w) be an unbiased estimator of �x (v)�y(w).

[�x�y(v;w) := 1
n(n�1)

Pn
i=1
P

j 6=i k(xi ;v)l(yj ;w).

An unbiased estimator of u(v;w) is

û(v;w) = �̂xy(v;w)�[�x�y(v;w)

=
2

n(n � 1)

X
i<j

h(v;w)((xi ;yi ); (xj ;yj ));

where

h(v;w)((x;y); (x0;y0)) :=
1
2
(k(x;v)� k(x0;v))(l(y;w)� l(y0;w)):

û(v;w) is a one-sample 2nd -order U-statistic, given (v;w).

17/10



Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w)

where �̂xy(v;w) = 1
n
Pn

i=1 k(xi ;v)l(yi ;w).

�̂xy(v;w)

�

�̂x (v)�̂y(w)

=

Witness û(v;w)

HSIC(X ;Y ) = 0 if and only if X and Y are independent.
Test statistic = kûkRKHS (“flatness” of û). Complexity: O(n2).

Key: Can we measure the flatness by other way that costs only O(n)?

18/10



Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w)

where �̂xy(v;w) = 1
n
Pn

i=1 k(xi ;v)l(yi ;w).

�̂xy(v;w)

�

�̂x (v)�̂y(w)

=

Witness û(v;w)

HSIC(X ;Y ) = 0 if and only if X and Y are independent.
Test statistic = kûkRKHS (“flatness” of û). Complexity: O(n2).

Key: Can we measure the flatness by other way that costs only O(n)?

18/10



Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w)

where �̂xy(v;w) = 1
n
Pn

i=1 k(xi ;v)l(yi ;w).

�̂xy(v;w)

�

�̂x (v)�̂y(w)

=

Witness û(v;w)

HSIC(X ;Y ) = 0 if and only if X and Y are independent.
Test statistic = kûkRKHS (“flatness” of û). Complexity: O(n2).

Key: Can we measure the flatness by other way that costs only O(n)?

18/10



Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w)

where �̂xy(v;w) = 1
n
Pn

i=1 k(xi ;v)l(yi ;w).

�̂xy(v;w)

�

�̂x (v)�̂y(w)

=

Witness û(v;w)

HSIC(X ;Y ) = 0 if and only if X and Y are independent.
Test statistic = kûkRKHS (“flatness” of û). Complexity: O(n2).

Key: Can we measure the flatness by other way that costs only O(n)?

18/10



Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w)

where �̂xy(v;w) = 1
n
Pn

i=1 k(xi ;v)l(yi ;w).

�̂xy(v;w)

�

�̂x (v)�̂y(w)

=

Witness û(v;w)

HSIC(X ;Y ) = 0 if and only if X and Y are independent.
Test statistic = kûkRKHS (“flatness” of û). Complexity: O(n2).

Key: Can we measure the flatness by other way that costs only O(n)?

18/10



Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w)

where �̂xy(v;w) = 1
n
Pn

i=1 k(xi ;v)l(yi ;w).

�̂xy(v;w)

�

�̂x (v)�̂y(w)

=

Witness û(v;w)

HSIC(X ;Y ) = 0 if and only if X and Y are independent.
Test statistic = kûkRKHS (“flatness” of û). Complexity: O(n2).

Key: Can we measure the flatness by other way that costs only O(n)?

18/10



Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w)

where �̂xy(v;w) = 1
n
Pn

i=1 k(xi ;v)l(yi ;w).

�̂xy(v;w)

�

�̂x (v)�̂y(w)

=

Witness û(v;w)

HSIC(X ;Y ) = 0 if and only if X and Y are independent.
Test statistic = kûkRKHS (“flatness” of û). Complexity: O(n2).

Key: Can we measure the flatness by other way that costs only O(n)?

18/10



Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate û2(v;w) at only finitely many test locations.

A set of random J locations: f(v1;w1); : : : ; (vJ ;wJ )g

\FSIC2(X ;Y ) = 1
J
PJ

i=1 û2(vi ;wi )

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

Complexity: O((dx + dy)Jn). Linear time.

Can FSIC2(X ;Y ) = 0 even if X and Y are dependent??

No. Population FSIC(X ;Y ) = 0 iff X ? Y , almost surely.

19/10



Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate û2(v;w) at only finitely many test locations.

A set of random J locations: f(v1;w1); : : : ; (vJ ;wJ )g

\FSIC2(X ;Y ) = 1
J
PJ

i=1 û2(vi ;wi )

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

Complexity: O((dx + dy)Jn). Linear time.

Can FSIC2(X ;Y ) = 0 even if X and Y are dependent??

No. Population FSIC(X ;Y ) = 0 iff X ? Y , almost surely.

19/10



Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate û2(v;w) at only finitely many test locations.

A set of random J locations: f(v1;w1); : : : ; (vJ ;wJ )g

\FSIC2(X ;Y ) = 1
J
PJ

i=1 û2(vi ;wi )

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

Complexity: O((dx + dy)Jn). Linear time.

Can FSIC2(X ;Y ) = 0 even if X and Y are dependent??

No. Population FSIC(X ;Y ) = 0 iff X ? Y , almost surely.

19/10



Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate û2(v;w) at only finitely many test locations.

A set of random J locations: f(v1;w1); : : : ; (vJ ;wJ )g

\FSIC2(X ;Y ) = 1
J
PJ

i=1 û2(vi ;wi )

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

Complexity: O((dx + dy)Jn). Linear time.

Can FSIC2(X ;Y ) = 0 even if X and Y are dependent??

No. Population FSIC(X ;Y ) = 0 iff X ? Y , almost surely.

19/10



Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate û2(v;w) at only finitely many test locations.

A set of random J locations: f(v1;w1); : : : ; (vJ ;wJ )g

\FSIC2(X ;Y ) = 1
J
PJ

i=1 û2(vi ;wi )

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

Complexity: O((dx + dy)Jn). Linear time.

Can FSIC2(X ;Y ) = 0 even if X and Y are dependent??

No. Population FSIC(X ;Y ) = 0 iff X ? Y , almost surely.

19/10



HSIC vs. FSIC
Recall the witness

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w):

HSIC [Gretton et al., 2005]
= kûkRKHS

(v,w)

witness

Good when difference between
pxy and pxpy is spatially diffuse.

û is almost flat.

FSIC [proposed]
= 1

J
PJ

i=1 û2(vi ;wi )

(v,w)

witness

Good when difference between
pxy and pxpy is local.

û is mostly zero, has many
peaks (feature interaction).

20/10



Toy Problem 1: Independent Gaussians

X � N (0; Idx ) and Y � N (0; Idy).

Independent X ;Y . So, H0 holds.

Set � := 0:05; dx = dy = 250.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

103 104 105

Sample size n

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

T
y
p
e
-I

 e
rr

o
r

103 104 105

Sample size n

10-1

100

101

102

103

T
im

e
 (

s)

Correct type-I errors (false positive rate).

21/10



Toy Problem 1: Independent Gaussians

X � N (0; Idx ) and Y � N (0; Idy).

Independent X ;Y . So, H0 holds.

Set � := 0:05; dx = dy = 250.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

103 104 105

Sample size n

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

T
y
p
e
-I

 e
rr

o
r

103 104 105

Sample size n

10-1

100

101

102

103

T
im

e
 (

s)

Correct type-I errors (false positive rate).

21/10



Toy Problem 1: Independent Gaussians

X � N (0; Idx ) and Y � N (0; Idy).

Independent X ;Y . So, H0 holds.

Set � := 0:05; dx = dy = 250.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

103 104 105

Sample size n

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

T
y
p
e
-I

 e
rr

o
r

103 104 105

Sample size n

10-1

100

101

102

103

T
im

e
 (

s)

Correct type-I errors (false positive rate).

21/10



Toy Problem 2: Sinusoid

pxy(x ; y) / 1+ sin(!x ) sin(!y) where x ; y 2 (��; �).

Local changes between pxy and pxpy .

Set n = 4000.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

1 2 3 4 5 6
ω in 1 + sin(ωx)sin(ωy)

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

Main Point: NFSIC can handle well the local changes in the joint space.

22/10



Toy Problem 2: Sinusoid

pxy(x ; y) / 1+ sin(!x ) sin(!y) where x ; y 2 (��; �).

Local changes between pxy and pxpy .

Set n = 4000.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

1 2 3 4 5 6
ω in 1 + sin(ωx)sin(ωy)

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

ω= 1. 00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Main Point: NFSIC can handle well the local changes in the joint space.

22/10



Toy Problem 2: Sinusoid

pxy(x ; y) / 1+ sin(!x ) sin(!y) where x ; y 2 (��; �).

Local changes between pxy and pxpy .

Set n = 4000.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

1 2 3 4 5 6
ω in 1 + sin(ωx)sin(ωy)

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

ω= 2. 00

Main Point: NFSIC can handle well the local changes in the joint space.

22/10



Toy Problem 2: Sinusoid

pxy(x ; y) / 1+ sin(!x ) sin(!y) where x ; y 2 (��; �).

Local changes between pxy and pxpy .

Set n = 4000.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

1 2 3 4 5 6
ω in 1 + sin(ωx)sin(ωy)

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

ω= 3. 00

Main Point: NFSIC can handle well the local changes in the joint space.

22/10



Toy Problem 2: Sinusoid

pxy(x ; y) / 1+ sin(!x ) sin(!y) where x ; y 2 (��; �).

Local changes between pxy and pxpy .

Set n = 4000.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

1 2 3 4 5 6
ω in 1 + sin(ωx)sin(ωy)

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

ω= 4. 00

Main Point: NFSIC can handle well the local changes in the joint space.

22/10



Toy Problem 2: Sinusoid

pxy(x ; y) / 1+ sin(!x ) sin(!y) where x ; y 2 (��; �).

Local changes between pxy and pxpy .

Set n = 4000.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

1 2 3 4 5 6
ω in 1 + sin(ωx)sin(ωy)

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

ω= 4. 00

Main Point: NFSIC can handle well the local changes in the joint space.

22/10



Toy Problem 3: Gaussian Sign

y = jZ j
Qdx

i=1 sign(xi ), where x � N (0; Idy ) and Z � N (0; 1) (noise).
Full interaction among x1; : : : ; xdx .
Need to consider all x1; : : : ; xd to detect the dependency.

103 104 105

Sample size n

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

NFSIC-opt

NFSIC-med

QHSIC

NyHSIC

FHSIC

RDC

Main Point: NFSIC can handle feature interaction.

23/10



Toy Problem 3: Gaussian Sign

y = jZ j
Qdx

i=1 sign(xi ), where x � N (0; Idy ) and Z � N (0; 1) (noise).
Full interaction among x1; : : : ; xdx .
Need to consider all x1; : : : ; xd to detect the dependency.

103 104 105

Sample size n

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

NFSIC-opt

NFSIC-med

QHSIC

NyHSIC

FHSIC

RDC

Main Point: NFSIC can handle feature interaction.

23/10



Test Power vs. J

Test power does not always increase with J (number of test locations).

n = 800.

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

ω= 2. 00

100 200 300 400 500 600
J

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

Accurate estimation of �̂ 2 RJ�J in �̂n = nû>
�
�̂ + 
nI

��1
û becomes

more difficult.

Large J defeats the purpose of a linear-time test.

24/10



Real Problem: Million Song Data
Song (X ) vs. year of release (Y ).

Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].
X 2 R90 contains audio features.
Y 2 R is the year of release.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

500 1000 1500 2000
Sample size n

0.000

0.005

0.010

0.015

0.020

0.025

T
y
p
e
-I

 e
rr

o
r

Break (X ;Y ) pairs to simulate H0.

500 1000 1500 2000
Sample size n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 p
o
w

e
r

NFSIC-opt has the highest power among the linear-time tests.

25/10



Real Problem: Million Song Data
Song (X ) vs. year of release (Y ).

Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].
X 2 R90 contains audio features.
Y 2 R is the year of release.
NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC

500 1000 1500 2000
Sample size n

0.000

0.005

0.010

0.015

0.020

0.025

T
y
p
e
-I

 e
rr

o
r

Break (X ;Y ) pairs to simulate H0.

500 1000 1500 2000
Sample size n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 p
o
w

e
r

NFSIC-opt has the highest power among the linear-time tests.
25/10



References I

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011).
The million song dataset.
In International Conference on Music Information Retrieval
(ISMIR).

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005).
Measuring Statistical Dependence with Hilbert-Schmidt Norms.
In Algorithmic Learning Theory (ALT), pages 63–77.

Lopez-Paz, D., Hennig, P., and Schölkopf, B. (2013).
The Randomized Dependence Coefficient.
In Advances in Neural Information Processing Systems (NIPS),
pages 1–9.

26/10



References II

Wang, H. and Schmid, C. (2013).
Action recognition with improved trajectories.
In IEEE International Conference on Computer Vision (ICCV),
pages 3551–3558.

27/10


	Appendix

