The Finite-Set Independence Criterion (FSIC)

Wittawat Jitkrittum Zoltán Szabó Arthur Gretton

Gatsby Unit
University College London
wittawat@gatsby.ucl.ac.uk

3rd UCL Workshop on the Theory of Big Data

28 June 2017

What Is Independence Testing?

- lacksquare Let $(X,\,Y)\in\mathbb{R}^{d_x} imes\mathbb{R}^{d_y}$ be random vectors following $P_{xy}.$
- Given a joint sample $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n \sim P_{xy}$ (unknown), test

$$H_0: P_{xy} = P_x P_y,$$
 vs.
$$H_1: P_{xy} \neq P_x P_y.$$

- Compute a test statistic $\hat{\lambda}_n$. Reject H_0 if $\hat{\lambda}_n > T_{\alpha}$ (threshold).
- $T_{\alpha} = (1 \alpha)$ -quantile of the null distribution.

What Is Independence Testing?

- Let $(X, Y) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$ be random vectors following P_{xy} .
- Given a joint sample $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n \sim P_{xy}$ (unknown), test

$$H_0: P_{xy} = P_x P_y,$$
 vs. $H_1: P_{xy} \neq P_x P_y.$

- Compute a test statistic $\hat{\lambda}_n$. Reject H_0 if $\hat{\lambda}_n > T_\alpha$ (threshold).
- $T_{\alpha} = (1 \alpha)$ -quantile of the null distribution.

What Is Independence Testing?

- Let $(X, Y) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$ be random vectors following P_{xy} .
- Given a joint sample $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n \sim P_{xy}$ (unknown), test

$$H_0: P_{xy} = P_x P_y,$$
 vs. $H_1: P_{xy} \neq P_x P_y.$

- Compute a test statistic $\hat{\lambda}_n$. Reject H_0 if $\hat{\lambda}_n > T_{\alpha}$ (threshold).
- $T_{\alpha} = (1 \alpha)$ -quantile of the null distribution.

Motivations

Modern state-of-the-art test is HSIC [Gretton et al., 2005].

- \checkmark Nonparametric i.e., no assumption on P_{xy} . Kernel-based.
- **Slow.** Runtime: $\mathcal{O}(n^2)$ where n = sample size.
- X No systematic way to choose kernels.

- 1 Nonparametric
- 2 Linear-time. Runtime complexity: $\mathcal{O}(n)$. Fast.
- 3 Tunable i.e., well-defined criterion for parameter tuning.

Motivations

Modern state-of-the-art test is HSIC [Gretton et al., 2005].

- \checkmark Nonparametric i.e., no assumption on P_{xy} . Kernel-based.
- **Slow.** Runtime: $\mathcal{O}(n^2)$ where n = sample size.
- X No systematic way to choose kernels.

- 1 Nonparametric.
- 2 Linear-time. Runtime complexity: $\mathcal{O}(n)$. Fast.
- 3 Tunable i.e., well-defined criterion for parameter tuning.

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some feature $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X,\,Y) = \mathrm{cov}^2_{(\mathbf{x},\mathbf{y})\sim P_{xy}}\left[k(\mathbf{x},\mathbf{v}),\,l(\mathbf{y},\mathbf{w})\right]$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some feature $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X,\,Y) = \mathrm{cov}^2_{(\mathbf{x},\mathbf{y})\sim P_{xy}}\left[k(\mathbf{x},\mathbf{v}),\,l(\mathbf{y},\mathbf{w})\right]$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some feature $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X,\,Y) = \mathrm{cov}^2_{(\mathbf{x},\mathbf{y})\sim P_{xy}}\left[k(\mathbf{x},\mathbf{v}),\,l(\mathbf{y},\mathbf{w})\right]$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some feature $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X, Y) = \mathrm{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}) \right].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some feature $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X, Y) = \mathrm{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}) \right].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some feature $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X, Y) = \mathrm{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}) \right].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some feature $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X, Y) = \mathrm{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}) \right].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some feature $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X, Y) = \mathrm{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}) \right].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some feature $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X, Y) = \mathrm{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}) \right].$$

General Form of FSIC

$$ext{FSIC}^2(X, Y) = rac{1}{J} \sum_{j=1}^J ext{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}_j), l(\mathbf{y}, \mathbf{w}_j)
ight],$$

for J features $\{(\mathbf{v}_j, \mathbf{w}_j)\}_{j=1}^J \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$.

Proposition 1.

Assume

- 1 Kernels k and l satisfy some conditions (e.g. Gaussian kernels).
- [2] Features $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ are drawn from a distribution with a density.

FSIC(X, Y) = 0 if and only if X and Y are independent

Under $H_0: P_{xy} = P_x P_y,$ $n\widehat{\mathrm{FSIC}^2} \sim \mathrm{weighted} \; \mathrm{sum} \; \mathrm{of} \; J \; \mathrm{dependent} \; \chi^2 \; \mathrm{variables}$

■ Difficult to get $(1 - \alpha)$ -quantile for the threshold.

General Form of FSIC

$$ext{FSIC}^2(X, Y) = rac{1}{J} \sum_{j=1}^J ext{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}_j), l(\mathbf{y}, \mathbf{w}_j)
ight],$$

for J features $\{(\mathbf{v}_j, \mathbf{w}_j)\}_{j=1}^J \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$.

Proposition 1.

Assume

- 1 Kernels k and l satisfy some conditions (e.g. Gaussian kernels).
- Features $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ are drawn from a distribution with a density.

Then, for any $J \geq 1$,

FSIC(X, Y) = 0 if and only if X and Y are independent

Under
$$H_0: P_{xy} = P_x P_y,$$
 $n\widehat{ t FSIC}^2 \sim ext{weighted sum of } J ext{ dependent } \chi^2 ext{ variables}$

■ Difficult to get $(1 - \alpha)$ -quantile for the threshold.

General Form of FSIC

$$ext{FSIC}^2(X, Y) = rac{1}{J} \sum_{j=1}^J ext{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}_j), l(\mathbf{y}, \mathbf{w}_j)
ight],$$

for J features $\{(\mathbf{v}_j, \mathbf{w}_j)\}_{j=1}^J \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$.

Proposition 1.

Assume

- 1 Kernels k and l satisfy some conditions (e.g. Gaussian kernels).
- Peatures $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ are drawn from a distribution with a density.

Then, for any $J \geq 1$,

FSIC(X, Y) = 0 if and only if X and Y are independent

Under
$$H_0: P_{xy} = P_x P_y,$$
 $n\widehat{\mathrm{FSIC}^2} \sim \mathrm{weighted} \; \mathrm{sum} \; \mathrm{of} \; J \; \mathrm{dependent} \; \chi^2 \; \mathrm{variables}.$

■ Difficult to get $(1 - \alpha)$ -quantile for the threshold.

■ Then, $\widehat{\text{FSIC}^2} = \frac{1}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}}$.

$$\widehat{ ext{NFSIC}}^2(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^ op ig(\hat{\Sigma} + \gamma_n \mathbf{I}ig)^{-1}\hat{\mathbf{u}}$$

with a regularization parameter $\gamma_n \geq 0$.

 $\hat{\Sigma}_{ij} = ext{covariance of } \hat{u}_i ext{ and } \hat{u}_j.$

Theorem 1 (NFSIC test is consistent)

- 1 Under H_0 , $\hat{\lambda}_n \stackrel{d}{\to} \chi^2(J)$ as $n \to \infty$. Easy to get threshold T_{α} .
- 2 Under H_1 , $\mathbb{P}(\textit{reject } H_0) \rightarrow 1 \textit{ as } n \rightarrow \infty$.
- Complexity: $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$. Only need small J.

- Then, $\widehat{\text{FSIC}^2} = \frac{1}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}}$.

$$\widehat{ ext{NFSIC}^2}(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^ op \Big(\hat{\Sigma} + \gamma_n \mathbf{I}\Big)^{-1} \hat{\mathbf{u}},$$

with a regularization parameter $\gamma_n \geq 0$.

lacksquare $\hat{\Sigma}_{ij}=$ covariance of \hat{u}_i and $\hat{u}_j.$

Theorem 1 (NFSIC test is consistent)

- 1 Under H_0 , $\hat{\lambda}_n \stackrel{d}{\to} \chi^2(J)$ as $n \to \infty$. Easy to get threshold T_{α} .
- 2 Under H_1 , $\mathbb{P}(reject \ H_0) \to 1$ as $n \to \infty$
- Complexity: $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$. Only need small J.

- Then, $\widehat{\text{FSIC}^2} = \frac{1}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}}$.

$$\widehat{ ext{NFSIC}^2}(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^ op \Big(\hat{\Sigma} + \gamma_n \mathbf{I}\Big)^{-1} \hat{\mathbf{u}},$$

with a regularization parameter $\gamma_n \geq 0$.

lacksquare $\hat{\Sigma}_{ij}=$ covariance of \hat{u}_i and $\hat{u}_j.$

Theorem 1 (NFSIC test is consistent).

- 1 Under H_0 , $\hat{\lambda}_n \stackrel{d}{\to} \chi^2(J)$ as $n \to \infty$. Easy to get threshold T_{α} .
- 2 Under H_1 , $\mathbb{P}(reject \ H_0) o 1$ as $n o \infty$
- Complexity: $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$. Only need small J.

- Then, $\widehat{\text{FSIC}^2} = \frac{1}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}}$.

$$\widehat{ ext{NFSIC}^2}(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^ op \Big(\hat{\Sigma} + \gamma_n \mathbf{I}\Big)^{-1} \hat{\mathbf{u}},$$

with a regularization parameter $\gamma_n \geq 0$.

lacksquare $\hat{\Sigma}_{ij}=$ covariance of \hat{u}_i and \hat{u}_j .

Theorem 1 (NFSIC test is consistent).

- 1 Under H_0 , $\hat{\lambda}_n \stackrel{d}{\to} \chi^2(J)$ as $n \to \infty$. Easy to get threshold T_{α} .
- 2 Under H_1 , $\mathbb{P}(reject\ H_0) \to 1$ as $n \to \infty$.
- Complexity: $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$. Only need small J.

- $\blacksquare \text{ Let } \hat{\mathbf{u}} := \left(\widehat{\text{cov}}[k(\mathbf{x}, \mathbf{v_1}), l(\mathbf{y}, \mathbf{w_1})], \dots, \widehat{\text{cov}}[k(\mathbf{x}, \mathbf{v_J}), l(\mathbf{y}, \mathbf{w_J})]\right)^{\top} \in \mathbb{R}^J.$
- Then, $\widehat{\text{FSIC}^2} = \frac{1}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}}$.

$$\widehat{ ext{NFSIC}}^2(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^ op \Big(\hat{\Sigma} + \gamma_n \mathbf{I}\Big)^{-1} \hat{\mathbf{u}},$$

with a regularization parameter $\gamma_n \geq 0$.

lacksquare $\hat{\Sigma}_{ij}=$ covariance of \hat{u}_i and \hat{u}_j .

Theorem 1 (NFSIC test is consistent).

- 1 Under H_0 , $\hat{\lambda}_n \stackrel{d}{\to} \chi^2(J)$ as $n \to \infty$. Easy to get threshold T_{α} .
- 2 Under H_1 , $\mathbb{P}(reject \ H_0) \to 1$ as $n \to \infty$.
- Complexity: $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$. Only need small J.

Tuning Features and Kernels

■ Split the data into training (tr) and test (te) sets.

Procedure:

- 1 Choose $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ and Gaussian widths by maximizing $\hat{\lambda}_n^{(\mathrm{tr})}$ (i.e. computed on the training set). Gradient ascent.
- 2 Reject H_0 if $\hat{\lambda}_n^{(\text{te})} > (1 \alpha)$ -quantile of $\chi^2(J)$.
- Splitting avoids overfitting.

Theorem 2.

- This procedure increases a lower bound on $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ true})$ (test power).
- Asymptotically, false rejection rate is α .

Tuning Features and Kernels

■ Split the data into training (tr) and test (te) sets.

Procedure:

- 1 Choose $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ and Gaussian widths by maximizing $\hat{\lambda}_n^{(\mathrm{tr})}$ (i.e., computed on the training set). Gradient ascent.
- 2 Reject H_0 if $\hat{\lambda}_n^{(\text{te})} > (1-\alpha)$ -quantile of $\chi^2(J)$.
- Splitting avoids overfitting.

Theorem 2.

- This procedure increases a lower bound on $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ true})$ (test power).
- Asymptotically, false rejection rate is α .

Tuning Features and Kernels

■ Split the data into training (tr) and test (te) sets.

Procedure:

- 1 Choose $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ and Gaussian widths by maximizing $\hat{\lambda}_n^{(\mathrm{tr})}$ (i.e., computed on the training set). Gradient ascent.
- 2 Reject H_0 if $\hat{\lambda}_n^{(\text{te})} > (1-\alpha)$ -quantile of $\chi^2(J)$.
- Splitting avoids overfitting.

Theorem 2.

- This procedure increases a lower bound on $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ true})$ (test power).
- Asymptotically, false rejection rate is α .

Simulation Settings

■ Gaussian kernels $k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\sigma_x^2}\right)$ for both X and Y.

	Method	Description
1	NFSIC-opt	NFSIC with optimization. $O(n)$.
2	QHSIC [Gretton et al., 2005]	State-of-the-art HSIC. $\mathcal{O}(n^2)$.
3	NFSIC-med	NFSIC with random features.
4	NyHSIC	Linear-time HSIC with Nystrom approx.
5	FHSIC	Linear-time HSIC with random Fourier features
6	RDC [Lopez-Paz et al., 2013]	Canonical Correlation Analysis with cosine basis.
	NFSIC-opt •••• NFSIC-med	← QHSIC ← NyHSIC ← FHSIC ← RDC

J = 10 in NFSIC.

Youtube Video (X) vs. Caption (Y).

- $X \in \mathbb{R}^{2000}$: Fisher vector encoding of motion boundary histograms descriptors [Wang and Schmid, 2013].
- $Y \in \mathbb{R}^{1878}$: Bag of words. Term frequency.
- $\alpha = 0.01.$

For large n, NFSIC is comparable to HSIC.

Youtube Video (X) vs. Caption (Y).

- $X \in \mathbb{R}^{2000}$: Fisher vector encoding of motion boundary histograms descriptors [Wang and Schmid, 2013].
- $Y \in \mathbb{R}^{1878}$: Bag of words. Term frequency.
- $\alpha = 0.01.$

For large n, NFSIC is comparable to HSIC.

Youtube Video (X) vs. Caption (Y).

- $X \in \mathbb{R}^{2000}$: Fisher vector encoding of motion boundary histograms descriptors [Wang and Schmid, 2013].
- $Y \in \mathbb{R}^{1878}$: Bag of words. Term frequency.
- $\alpha = 0.01.$

■ For large n, NFSIC is comparable to HSIC.

Conclusions

- Proposed The Finite Set Independence Criterion (FSIC).
- Independece test based on FSIC is
 - 1 nonparametric,
 - 2 linear-time,
 - 3 adaptive (parameters automatically tuned).

An Adaptive Test of Independence with Analytic Kernel Embeddings Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton https://arxiv.org/abs/1610.04782 (to appear in ICML 2017)

■ Python code: https://github.com/wittawatj/fsic-test

Questions?

Thank you

Reference

Coauthors:

Zoltán Szabó École Polytechnique

Arthur Gretton
Gatsby Unit, UCL

An Adaptive Test of Independence with Analytic Kernel Embeddings Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton https://arxiv.org/abs/1610.04782 (to appear in ICML 2017)

■ Python code: https://github.com/wittawatj/fsic-test

Requirements on the Kernels

Definition 1 (Analytic kernels).

 $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is said to be <u>analytic</u> if for all $\mathbf{x} \in \mathcal{X}$, $\mathbf{v} \to k(\mathbf{x}, \mathbf{v})$ is a real analytic function on \mathcal{X} .

- Analytic: Taylor series about x_0 converges for all $x_0 \in \mathcal{X}$.
- \implies k is infinitely differentiable.

Definition 2 (Characteristic kernels).

lacksquare Let $\mu_P(\mathbf{v}) := \mathbb{E}_{\mathbf{z} \sim P}[k(\mathbf{z}, \mathbf{v})].$

k is said to be characteristic if μ_P is unique for distinct P. Equivalently, $P \mapsto \mu_P$ is injective.

Optimization Objective = Power Lower Bound

- $lacksquare \operatorname{Recall} \hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \gamma_n \mathbf{I}\right)^{-1} \hat{\mathbf{u}}.$
- Let NFSIC² $(X, Y) := \lambda_n := n\mathbf{u}^{\top}\Sigma^{-1}\mathbf{u}$.

Theorem 3 (A lower bound on the test power).

II With some conditions, the test power $\mathbb{P}_{H_1}\left(\hat{\lambda}_n \geq T_{lpha}
ight) \geq L(\lambda_n)$ where

$$L(\lambda_n) = 1 - 62e^{-\xi_1\gamma_n^2(\lambda_n - T_\alpha)^2/n} - 2e^{-\lfloor 0.5n \rfloor(\lambda_n - T_\alpha)^2/\left[\xi_2 n^2 - 2e^{-\left[(\lambda_n - T_\alpha)\gamma_n(n-1)/3 - \xi_3 n - c_3\gamma_n^2 n(n-1)\right]^2/\left[\xi_4 n^2(n-1)\right]}$$

where $\xi_1, \ldots, \xi_4, c_3 > 0$ are constants

2 For large n, $L(\lambda_n)$ is increasing in λ_n

Optimization Objective = Power Lower Bound

- $lacksquare ext{Recall } \hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \gamma_n \mathbf{I}
 ight)^{-1} \hat{\mathbf{u}}.$
- Let NFSIC² $(X, Y) := \lambda_n := n\mathbf{u}^{\top}\Sigma^{-1}\mathbf{u}$.

Theorem 3 (A lower bound on the test power).

1 With some conditions, the test power $\mathbb{P}_{H_1}\left(\hat{\lambda}_n \geq T_{\alpha}\right) \geq L(\lambda_n)$ where

$$L(\lambda_n) = 1 - 62e^{-\xi_1\gamma_n^2(\lambda_n - T_\alpha)^2/n} - 2e^{-\lfloor 0.5n \rfloor(\lambda_n - T_\alpha)^2/\left[\xi_2 n^2 - 2e^{-\left[(\lambda_n - T_\alpha)\gamma_n(n-1)/3 - \xi_3 n - c_3\gamma_n^2 n(n-1)\right]^2/\left[\xi_4 n^2(n-1)\right]}$$

where $\xi_1, \ldots, \xi_4, c_3 > 0$ are constants.

2 For large n, $L(\lambda_n)$ is increasing in λ_n

Optimization Objective = Power Lower Bound

- lacksquare Recall $\hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \gamma_n \mathbf{I}\right)^{-1} \hat{\mathbf{u}}.$
- Let NFSIC² $(X, Y) := \lambda_n := n\mathbf{u}^{\top} \Sigma^{-1} \mathbf{u}$.

Theorem 3 (A lower bound on the test power).

1 With some conditions, the test power $\mathbb{P}_{H_1}\left(\hat{\lambda}_n \geq T_{lpha}\right) \geq L(\lambda_n)$ where

$$L(\lambda_n) = 1 - 62e^{-\xi_1\gamma_n^2(\lambda_n - T_\alpha)^2/n} - 2e^{-\lfloor 0.5n \rfloor (\lambda_n - T_\alpha)^2/\left[\xi_2 n^2\right]} - 2e^{-\left[(\lambda_n - T_\alpha)\gamma_n(n-1)/3 - \xi_3 n - c_3\gamma_n^2 n(n-1)\right]^2/\left[\xi_4 n^2(n-1)\right]},$$

where $\xi_1, \ldots, \xi_4, c_3 > 0$ are constants.

2 For large n, $L(\lambda_n)$ is increasing in λ_n .

Optimization Objective = Power Lower Bound

- lacksquare Recall $\hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \gamma_n \mathbf{I}\right)^{-1} \hat{\mathbf{u}}.$
- Let NFSIC² $(X, Y) := \lambda_n := n\mathbf{u}^{\top}\Sigma^{-1}\mathbf{u}$.

Theorem 3 (A lower bound on the test power).

1 With some conditions, the test power $\mathbb{P}_{H_1}\left(\hat{\lambda}_n \geq T_{lpha}\right) \geq L(\lambda_n)$ where

$$L(\lambda_n) = 1 - 62e^{-\xi_1\gamma_n^2(\lambda_n - T_\alpha)^2/n} - 2e^{-\lfloor 0.5n \rfloor (\lambda_n - T_\alpha)^2/\left[\xi_2 n^2\right]} - 2e^{-\left[(\lambda_n - T_\alpha)\gamma_n(n-1)/3 - \xi_3 n - c_3\gamma_n^2 n(n-1)\right]^2/\left[\xi_4 n^2(n-1)\right]},$$

where $\xi_1, \ldots, \xi_4, c_3 > 0$ are constants.

2 For large n, $L(\lambda_n)$ is increasing in λ_n .

Set test locations and Gaussian widths = $\arg \max L(\lambda_n) = \arg \max \lambda_n$

An Estimator of NFSIC²

$$\hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \pmb{\gamma}_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}},$$

- J test locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$.
- $\mathbf{K} = [k(\mathbf{v}_i, \mathbf{x}_i)] \in \mathbb{R}^{J \times n}$
- L = $[l(\mathbf{w}_i, \mathbf{y}_i)] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

Estimators

- $\hat{\mathbf{u}} = \frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_n}{n-1} \frac{(\mathbf{K} \mathbf{1}_n) \circ (\mathbf{L} \mathbf{1}_n)}{n(n-1)}$
- 2 $\hat{\Sigma} = \frac{\Gamma \Gamma^{\top}}{n}$ where $\Gamma := (\mathbf{K} n^{-1} \mathbf{K} \mathbf{1}_n \mathbf{1}_n^{\top}) \circ (\mathbf{L} n^{-1} \mathbf{L} \mathbf{1}_n \mathbf{1}_n^{\top}) \hat{\mathbf{u}} \mathbf{1}_n^{\top}$.
- $\hat{\lambda}_n$ can be computed in $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$ time.

Main Point: Linear in n. Cubic in J (small)

An Estimator of NFSIC²

$$\hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \gamma_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}},$$

- J test locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$.
- $\mathbf{K} = [k(\mathbf{v}_i, \mathbf{x}_i)] \in \mathbb{R}^{J imes n}$
- $\mathbf{L} = [l(\mathbf{w}_i, \mathbf{y}_j)] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

Estimators

- $\hat{\mathbf{u}} = \frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_n}{n-1} \frac{(\mathbf{K} \mathbf{1}_n) \circ (\mathbf{L} \mathbf{1}_n)}{n(n-1)}$
- 2 $\hat{\Sigma} = \frac{\Gamma\Gamma^{+}}{n}$ where $\Gamma := (\mathbf{K} n^{-1}\mathbf{K}\mathbf{1}_{n}\mathbf{1}_{n}^{\top}) \circ (\mathbf{L} n^{-1}\mathbf{L}\mathbf{1}_{n}\mathbf{1}_{n}^{\top}) \hat{\mathbf{u}}\mathbf{1}_{n}^{\top}$.
- $\hat{\lambda}_n$ can be computed in $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$ time.

Main Point: Linear in n. Cubic in J (small)

An Estimator of NFSIC²

$$\hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + oldsymbol{\gamma}_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}},$$

- J test locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$.
- $\mathbf{K} = [k(\mathbf{v}_i, \mathbf{x}_i)] \in \mathbb{R}^{J \times n}$
- $\mathbf{L} = [l(\mathbf{w}_i, \mathbf{y}_i)] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

Estimators

1
$$\hat{\mathbf{u}} = \frac{(\mathbf{K} \circ \mathbf{L})\mathbf{1}_n}{n-1} - \frac{(\mathbf{K}\mathbf{1}_n) \circ (\mathbf{L}\mathbf{1}_n)}{n(n-1)}.$$

2
$$\hat{\Sigma} = \frac{\Gamma\Gamma^{\top}}{n}$$
 where $\Gamma := (\mathbf{K} - n^{-1}\mathbf{K}\mathbf{1}_n\mathbf{1}_n^{\top}) \circ (\mathbf{L} - n^{-1}\mathbf{L}\mathbf{1}_n\mathbf{1}_n^{\top}) - \hat{\mathbf{u}}\mathbf{1}_n^{\top}$.

 $\hat{\lambda}_n$ can be computed in $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$ time.

Main Point: Linear in n. Cubic in J (small).

Alternative View of the Witness $u(\mathbf{v}, \mathbf{w})$

The witness $u(\mathbf{v}, \mathbf{w})$ can be rewritten as

$$egin{aligned} u(\mathbf{v},\mathbf{w}) &:= \mu_{xy}(\mathbf{v},\mathbf{w}) - \mu_x(\mathbf{v})\mu_y(\mathbf{w}) \ &= \mathbb{E}_{\mathbf{x}\mathbf{y}}[k(\mathbf{x},\mathbf{v})l(\mathbf{y},\mathbf{w})] - \mathbb{E}_{\mathbf{x}}[k(\mathbf{x},\mathbf{v})]\mathbb{E}_{\mathbf{y}}[l(\mathbf{y},\mathbf{w})], \ &= \mathsf{cov}_{\mathbf{x}\mathbf{y}}[k(\mathbf{x},\mathbf{v}),l(\mathbf{y},\mathbf{w})]. \end{aligned}$$

- 1 Transforming $\mathbf{x}\mapsto k(\mathbf{x},\mathbf{v})$ and $\mathbf{y}\mapsto l(\mathbf{y},\mathbf{w})$ (from \mathbb{R}^{d_y} to \mathbb{R}).
- 2 Then, take the covariance.

The kernel transformations turn the linear covariance into a dependence measure.

Alternative View of the Witness $u(\mathbf{v}, \mathbf{w})$

The witness $u(\mathbf{v}, \mathbf{w})$ can be rewritten as

$$egin{aligned} u(\mathbf{v},\mathbf{w}) &:= \mu_{xy}(\mathbf{v},\mathbf{w}) - \mu_x(\mathbf{v})\mu_y(\mathbf{w}) \ &= \mathbb{E}_{\mathbf{x}\mathbf{y}}[k(\mathbf{x},\mathbf{v})l(\mathbf{y},\mathbf{w})] - \mathbb{E}_{\mathbf{x}}[k(\mathbf{x},\mathbf{v})]\mathbb{E}_{\mathbf{y}}[l(\mathbf{y},\mathbf{w})], \ &= \mathsf{cov}_{\mathbf{x}\mathbf{y}}[k(\mathbf{x},\mathbf{v}),l(\mathbf{y},\mathbf{w})]. \end{aligned}$$

- 1 Transforming $\mathbf{x}\mapsto k(\mathbf{x},\mathbf{v})$ and $\mathbf{y}\mapsto l(\mathbf{y},\mathbf{w})$ (from \mathbb{R}^{d_y} to \mathbb{R}).
- 2 Then, take the covariance.

The kernel transformations turn the linear covariance into a dependence measure.

Alternative Form of $\hat{u}(\mathbf{v}, \mathbf{w})$

- lacksquare Recall $\widehat{\mathrm{FSIC}^2} = rac{1}{J} \sum_{i=1}^J \hat{u}(\mathbf{v}_i, \mathbf{w}_i)^2$
- Let $\widehat{\mu_x \mu_y}(\mathbf{v}, \mathbf{w})$ be an unbiased estimator of $\mu_x(\mathbf{v})\mu_y(\mathbf{w})$.
- $\widehat{\mu_x \mu_y}(\mathbf{v}, \mathbf{w}) := \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j \neq i} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_j, \mathbf{w}).$
- An unbiased estimator of $u(\mathbf{v}, \mathbf{w})$ is

$$egin{aligned} \hat{u}(\mathbf{v},\mathbf{w}) &= \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \widehat{\mu_x \mu_y}(\mathbf{v},\mathbf{w}) \ &= rac{2}{n(n-1)} \sum_{i < j} h_{(\mathbf{v},\mathbf{w})}((\mathbf{x}_i,\mathbf{y}_i),(\mathbf{x}_j,\mathbf{y}_j)) \end{aligned}$$

where

$$h_{(\mathbf{v},\mathbf{w})}((\mathbf{x},\mathbf{y}),(\mathbf{x}',\mathbf{y}')) := \frac{1}{2}(k(\mathbf{x},\mathbf{v})-k(\mathbf{x}',\mathbf{v}))(l(\mathbf{y},\mathbf{w})-l(\mathbf{y}',\mathbf{w}))$$

 $\hat{u}(\mathbf{v}, \mathbf{w})$ is a one-sample 2^{nd} -order U-statistic, given (\mathbf{v}, \mathbf{w}) .

Alternative Form of $\hat{u}(\mathbf{v}, \mathbf{w})$

- lacksquare Recall $\widehat{\mathrm{FSIC}^2} = rac{1}{J} \sum_{i=1}^J \hat{u}(\mathbf{v}_i, \mathbf{w}_i)^2$
- Let $\widehat{\mu_x \mu_y}(\mathbf{v}, \mathbf{w})$ be an unbiased estimator of $\mu_x(\mathbf{v})\mu_y(\mathbf{w})$.
- $\widehat{\mu_x \mu_y}(\mathbf{v}, \mathbf{w}) := \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j \neq i} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_j, \mathbf{w}).$
- An unbiased estimator of $u(\mathbf{v}, \mathbf{w})$ is

$$egin{aligned} \hat{u}(\mathbf{v},\mathbf{w}) &= \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \widehat{\mu_x \mu_y}(\mathbf{v},\mathbf{w}) \ &= rac{2}{n(n-1)} \sum_{i < j} h_{(\mathbf{v},\mathbf{w})}((\mathbf{x}_i,\mathbf{y}_i),(\mathbf{x}_j,\mathbf{y}_j)), \end{aligned}$$

where

$$h_{(\mathbf{v},\mathbf{w})}((\mathbf{x},\mathbf{y}),(\mathbf{x}',\mathbf{y}')) := rac{1}{2}(k(\mathbf{x},\mathbf{v})-k(\mathbf{x}',\mathbf{v}))(l(\mathbf{y},\mathbf{w})-l(\mathbf{y}',\mathbf{w})).$$

• $\hat{u}(\mathbf{v}, \mathbf{w})$ is a one-sample 2^{nd} -order U-statistic, given (\mathbf{v}, \mathbf{w}) .

■ Hilbert-Schmidt Independence Criterion.

$$ext{HSIC}(X,\,Y) = ext{MMD}(P_{xy},P_xP_y) = \|u\|_{ ext{RKHS}}$$
 (need two kernels: k for X , and l for Y).

■ Empirical witness:

$$\hat{u}(\mathbf{v},\mathbf{w}) = \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$$
 where $\hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) = rac{1}{n}\sum_{i=1}^{n}k(\mathbf{x}_{i},\mathbf{v})l(\mathbf{y}_{i},\mathbf{w}).$

- HSIC(X, Y) = 0 if and only if X and Y are independent.
- Test statistic = $\|\hat{u}\|_{\text{RKHS}}$ ("flatness" of \hat{u}). Complexity: $\mathcal{O}(n^2)$.

■ Hilbert-Schmidt Independence Criterion.

$$\mathrm{HSIC}(X,\,Y)=\mathrm{MMD}(P_{xy},P_xP_y)=\|u\|_{\mathrm{RKHS}}$$

(need two kernels: k for X, and l for Y).

■ Empirical witness:

$$\hat{u}(\mathbf{v}, \mathbf{w}) = \hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) - \hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$$

where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{\pi} \sum_{i=1}^{n} k(\mathbf{x}_{i}, \mathbf{v})l(\mathbf{y}_{i}, \mathbf{w}).$

- HSIC(X, Y) = 0 if and only if X and Y are independent.
- Test statistic = $\|\hat{u}\|_{\text{RKHS}}$ ("flatness" of \hat{u}). Complexity: $\mathcal{O}(n^2)$.

■ Hilbert-Schmidt Independence Criterion.

$$\mathrm{HSIC}(X,\,Y) = \mathrm{MMD}(P_{xy},P_xP_y) = \|u\|_{\mathrm{RKHS}}$$

(need two kernels: k for X, and l for Y).

■ Empirical witness:

$$\hat{u}(\mathbf{v}, \mathbf{w}) = \hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) - \hat{\mu}_x(\mathbf{v})\hat{\mu}_y(\mathbf{w})$$
 where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^n k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w})$.

- HSIC(X, Y) = 0 if and only if X and Y are independent.
- Test statistic = $\|\hat{u}\|_{\text{RKHS}}$ ("flatness" of \hat{u}). Complexity: $\mathcal{O}(n^2)$.

■ Hilbert-Schmidt Independence Criterion.

$$\mathrm{HSIC}(X,\,Y) = \mathrm{MMD}(P_{xy},P_xP_y) = \|u\|_{\mathrm{RKHS}}$$

(need two kernels: k for X, and l for Y).

■ Empirical witness:

$$\hat{u}(\mathbf{v},\mathbf{w}) = \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$$

where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w}).$

- HSIC(X, Y) = 0 if and only if X and Y are independent.
- Test statistic = $\|\hat{u}\|_{\text{RKHS}}$ ("flatness" of \hat{u}). Complexity: $\mathcal{O}(n^2)$.

■ Hilbert-Schmidt Independence Criterion.

$$\mathrm{HSIC}(X,\,Y) = \mathrm{MMD}(P_{xy},P_xP_y) = \|u\|_{\mathrm{RKHS}}$$

(need two kernels: k for X, and l for Y).

■ Empirical witness:

$$\hat{u}(\mathbf{v},\mathbf{w}) = \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$$

where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w}).$

- HSIC(X, Y) = 0 if and only if X and Y are independent.
- Test statistic = $\|\hat{u}\|_{\text{RKHS}}$ ("flatness" of \hat{u}). Complexity: $\mathcal{O}(n^2)$.

■ Hilbert-Schmidt Independence Criterion.

$$\mathrm{HSIC}(X,\,Y)=\mathrm{MMD}(P_{xy},P_xP_y)=\|u\|_{\mathrm{RKHS}}$$

(need two kernels: k for X, and l for Y).

■ Empirical witness:

$$\hat{u}(\mathbf{v},\mathbf{w}) = \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$$

where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w}).$

- HSIC(X, Y) = 0 if and only if X and Y are independent.
- Test statistic = $\|\hat{u}\|_{\text{RKHS}}$ ("flatness" of \hat{u}). Complexity: $\mathcal{O}(n^2)$.

■ <u>Hilbert-Schmidt Independence Criterion</u>.

$$\mathrm{HSIC}(X,\,Y)=\mathrm{MMD}(P_{xy},P_xP_y)=\|u\|_{\mathrm{RKHS}}$$

(need two kernels: k for X, and l for Y).

■ Empirical witness:

$$\hat{u}(\mathbf{v},\mathbf{w}) = \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \hat{\mu}_x(\mathbf{v})\hat{\mu}_y(\mathbf{w})$$

_

where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w}).$

$$\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})$$

$$\hat{\mu}_x(\mathbf{v})\hat{\mu}_y(\mathbf{w})$$

Witness $\hat{u}(\mathbf{v}, \mathbf{w})$

- HSIC(X, Y) = 0 if and only if X and Y are independent.
- Test statistic = $\|\hat{u}\|_{\text{RKHS}}$ ("flatness" of \hat{u}). Complexity: $\mathcal{O}(n^2)$.

- A set of random J locations: $\{(\mathbf{v}_1, \mathbf{w}_1), \dots, (\mathbf{v}_J, \mathbf{w}_J)\}$
- lacksquare $\widehat{\mathrm{FSIC}}^2(X, Y) = rac{1}{J} \sum_{i=1}^J \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i)$

- Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.
- Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??

- A set of random J locations: $\{(\mathbf{v}_1, \mathbf{w}_1), \dots, (\mathbf{v}_J, \mathbf{w}_J)\}$
- lacksquare $\widehat{\mathrm{FSIC}}^2(X, Y) = rac{1}{J} \sum_{i=1}^J \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i)$

- Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.
- Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??

- A set of random J locations: $\{(\mathbf{v}_1, \mathbf{w}_1), \dots, (\mathbf{v}_J, \mathbf{w}_J)\}$
- lacksquare $\widehat{\mathrm{FSIC}}^2(X, Y) = rac{1}{J} \sum_{i=1}^J \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i)$

- Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.
- Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??

- A set of random J locations: $\{(\mathbf{v}_1, \mathbf{w}_1), \dots, (\mathbf{v}_J, \mathbf{w}_J)\}$
- lacksquare $\widehat{\mathrm{FSIC}}^2(X, Y) = rac{1}{J} \sum_{i=1}^J \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i)$

- Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.
- Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??

- A set of random J locations: $\{(\mathbf{v}_1, \mathbf{w}_1), \dots, (\mathbf{v}_J, \mathbf{w}_J)\}$
- lacksquare $\widehat{\mathrm{FSIC}}^2(X, Y) = rac{1}{J} \sum_{i=1}^J \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i)$

- Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.
- Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??
- No. Population FSIC(X, Y) = 0 iff $X \perp Y$, almost surely.

HSIC vs. FSIC

Recall the witness

$$\hat{u}(\mathbf{v},\mathbf{w}) = \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w}).$$

HSIC [Gretton et al., 2005] = $\|\hat{u}\|_{\text{RKHS}}$

Good when difference between p_{xy} and $p_x p_y$ is spatially diffuse.

 \hat{u} is almost flat.

Good when difference between p_{xy} and $p_x p_y$ is local.

• \hat{u} is mostly zero, has many peaks (feature interaction).

Toy Problem 1: Independent Gaussians

- lacksquare $X \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d_x})$ and $Y \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{dy})$.
- Independent X, Y. So, H_0 holds.
- Set $\alpha := 0.05$, $d_x = d_y = 250$.

Toy Problem 1: Independent Gaussians

- $X \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d_x})$ and $Y \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{dy})$.
- Independent X, Y. So, H_0 holds.
- Set $\alpha := 0.05$, $d_x = d_y = 250$.

■ Correct type-I errors (false positive rate).

Toy Problem 1: Independent Gaussians

- $X \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d_x})$ and $Y \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{dy})$.
- Independent X, Y. So, H_0 holds.
- Set $\alpha := 0.05$, $d_x = d_y = 250$.

Correct type-I errors (false positive rate).

- $p_{xy}(x, y) \propto 1 + \sin(\omega x) \sin(\omega y)$ where $x, y \in (-\pi, \pi)$.
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $p_{xy}(x, y) \propto 1 + \sin(\omega x) \sin(\omega y)$ where $x, y \in (-\pi, \pi)$.
- Local changes between p_{xy} and $p_x p_y$.
- \blacksquare Set n = 4000.

- $p_{xy}(x, y) \propto 1 + \sin(\omega x) \sin(\omega y)$ where $x, y \in (-\pi, \pi)$.
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $p_{xy}(x, y) \propto 1 + \sin(\omega x) \sin(\omega y)$ where $x, y \in (-\pi, \pi)$.
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $p_{xy}(x, y) \propto 1 + \sin(\omega x) \sin(\omega y)$ where $x, y \in (-\pi, \pi)$.
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $p_{xy}(x, y) \propto 1 + \sin(\omega x) \sin(\omega y)$ where $x, y \in (-\pi, \pi)$.
- Local changes between p_{xy} and $p_x p_y$.
- \blacksquare Set n = 4000.

Main Point: NFSIC can handle well the local changes in the joint space.

Toy Problem 3: Gaussian Sign

- lacksquare $y=|Z|\prod_{i=1}^{d_x} \mathrm{sign}(x_i)$, where $\mathbf{x}\sim \mathcal{N}(\mathbf{0},\mathbf{I}_{d_y})$ and $Z\sim \mathcal{N}(\mathbf{0},\mathbf{1})$ (noise).
- Full interaction among x_1, \ldots, x_{d_x} .
- Need to consider all x_1, \ldots, x_d to detect the dependency.

Main Point: NFSIC can handle feature interaction.

Toy Problem 3: Gaussian Sign

- lacksquare $y=|Z|\prod_{i=1}^{d_x} \mathrm{sign}(x_i)$, where $\mathbf{x}\sim \mathcal{N}(\mathbf{0},\mathbf{I}_{d_y})$ and $Z\sim \mathcal{N}(\mathbf{0},\mathbf{1})$ (noise).
- Full interaction among x_1, \ldots, x_{d_x} .
- Need to consider all x_1, \ldots, x_d to detect the dependency.

Main Point: NFSIC can handle feature interaction.

Test Power vs. J

- Test power does not always increase with J (number of test locations).
- n = 800.

- Accurate estimation of $\hat{\Sigma} \in \mathbb{R}^{J \times J}$ in $\hat{\lambda}_n = n \hat{\mathbf{u}}^\top \left(\hat{\Sigma} + \gamma_n \mathbf{I} \right)^{-1} \hat{\mathbf{u}}$ becomes more difficult.
- \blacksquare Large J defeats the purpose of a linear-time test.

Real Problem: Million Song Data

Song (X) vs. year of release (Y).

- Western commercial tracks from 1922 to 2011 [Bertin-Mahieux et al., 2011].
- $X \in \mathbb{R}^{90}$ contains audio features.
- $Y \in \mathbb{R}$ is the year of release.

Real Problem: Million Song Data

Song (X) vs. year of release (Y).

- Western commercial tracks from 1922 to 2011 [Bertin-Mahieux et al., 2011].
- $X \in \mathbb{R}^{90}$ contains audio features.
- $Y \in \mathbb{R}$ is the year of release.

■ Break (X, Y) pairs to simulate H_0 .

NFSIC-opt has the highest power among the linear-time tests.

References I

- Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011). The million song dataset.

 In International Conference on Music Information Retrieval.
 - In International Conference on Music Information Retrieval (ISMIR).
- Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring Statistical Dependence with Hilbert-Schmidt Norms. In Algorithmic Learning Theory (ALT), pages 63-77.
- Lopez-Paz, D., Hennig, P., and Schölkopf, B. (2013).

 The Randomized Dependence Coefficient.

 In Advances in Neural Information Processing Systems (NIPS), pages 1–9.

References II

Wang, H. and Schmid, C. (2013).

Action recognition with improved trajectories.

In IEEE International Conference on Computer Vision (ICCV), pages 3551–3558.