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What Is Goodness-of-fit Testing?

m Given a known density p (model), and sample {x;}7_; ~ g (unknown)
defined on X C RY, test
HO ‘P =q,
vs. Hi:p # q,
= test whether {x;}7_; ~ p.
= Compute a test statistic A,. Reject Hy if A, > T, (threshold).
m T, = (1 — a)-quantile of the null distribution.
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Settings & Motivations

m Many classic tests assume a family for p (e.g., Gaussian), or are for
univariate variables.

m Want a multivariate nonparametric test.
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m Want a multivariate nonparametric test.

Recent kernel Stein discrepancy (KSD) test

[Liu et al., 2016, Chwialkowski et al., 2016]:
m v/ Nonparametric i.e., mild assumption on p, g. Kernel-based.
m X Slow. Runtime: O(n?) where n = sample size.

m X No systematic way to choose kernel.

Propose the Finite-Set Stein Discrepancy (FSSD).

1 Nonparametric.

2 Linear-time. Runtime complexity: O(n). Fast.

3 Adaptive i.e., well-defined criterion for parameter tuning.
4

Interpretable. Tells where the model does not fit the data.
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Stein Idea in Kernel Stein Discrepancy (KSD)

m Consider d = 1.
m Define a Stein operator of p as

(Tpf)(x)

for some real-valued function f.

_ Olf(x)p(x)]
p(x)
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Stein Idea in Kernel Stein Discrepancy (KSD)

m Consider d = 1.
m Define a Stein operator of p as

(Tpof)(x) =

for some real-valued function f.
m Assume lim|, | f(x)p(x) = 0. Then,

Ox[F(x)p(x)]

p(x)

Erng(Tpf)(x) =0 <= p=gq.

m Proof of <=

Evup(Tpf)(x) = / “;ﬂ OFIPI]

t/av )] dx = [F(x)p(]=, = 0.

m Only certain f makes = true.
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Kernel Stein Discrepancy (KSD)

m If considering all f € unit ball in an RKHS F, then = holds.
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m RKHS: computational tractability.
F = {X — R functions} Hilbert space with k : X x X — R repr. kernel if
1 for all x € X, k(-,x) € F (generators),
2 f(x) = (f,k(-,x)) » (reproducing property).
3¢ : X — F Hilbert such that k(x,y) = (¢(x), #(y)) £-

m Similarly for derivatives

f'(x) = <f, k’(-7x)>f.

m Examples:

ESE:

kG(a’ b) =€ 202 ’ kp(av b) = (<av b> + U)p )
3lla—b N
k3 (a; b) = (1 + M) JENEILELEY
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Kernel Stein Discrepancy (KSD)

m If considering all f € unit ball in an RKHS F, then = holds.
m KSD = square of

sup Exng(Tof)(x) = sup (f,Exwg{k(,x)0xlog p(x) + Oxk(-,x)} ) -
Ifllz<1 IFll=<1

=g
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Kernel Stein Discrepancy (KSD)

m If considering all £ € unit ball in an RKHS F, then = holds.
m KSD = square of

sup Eyxqg(Tof)(x) = sup <f,EXNq{k(~,x)8X|ogp(x)+8Xk(-,x)}>f

|Ifll <1 |1l <1
::g
= |lgllF,
— p(x)
— q(x)
— g'(%)
2 4

m Take the RKHS norm of Stein witness function g = g*.
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Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: given x, x’ ~ g, then
[Liu et al., 2016, Chwialkowski et al., 2016]

double sum

2 2 ] ' /
5T =|glF= ExnqBExng hp(X7X)

7/21



Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: given x, x’ ~ g, then
[Liu et al., 2016, Chwialkowski et al., 2016]

double sum
—
L ||gH§_— = ExngExing hp(x, x")

where

hp(x,y) = [Ox log p(x)] k(x, ) [Ox log p(y)]
+ [0y log p(y)] Oxk(x, y)
+ [Ox log p(x)] Oy k(x, y)
+ 0x0y k(x,y)

and k is RKHS kernel for F.
m v/ Only depends on kernel k and 0y log p(x).

m v Do not need to normalize p, or sample from it.
m X The “double sum” makes it O(d?n?). Slow.
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Proposal: the Finite Set Stein Discrepancy (FSSD)

Take g (Stein witness function), and evaluate g2 at finitely many locations.

— p(x)
— 4q(x)
— &)

N F

m Test locations V = {vy,...,v,} C R¥.
m Population FSSD (when d = 1)

FSSD? :=

Il

J
> &%(v)).
j=1

m g can be computed in O(d?n).
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FSSD is a Discrepancy Measure

Theorem 1.

Let V ={vi,...,v } C X be drawn i.i.d. from a distribution 1) which has a
density. Let X be a connected open set in RY. Assume

(Nice RKHS) Kernel k: X x X — R is Co-universal, and real analytic.
2 (Stein witness not too rough) ||g||% < oc.

p(x) ”2
q(x)

4 (vanishing boundary condition) lim|| o P(X)g(x) = 0.

[y

3 (Finite Fisher divergence) Ex~q||Vx log < 00 .

Then, n-almost surely

FSSD? = 0 if and only if p = q, for any J > 1. I

- X—Vv 2
m Gaussian kernel k(x,v) = exp (—” 202”2> works.
k

m In practice, J=1or J=5.
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More on FSSD?

m When d > 1, the Stein witness g has d outputs.

m Define
1

X X,V d.
S POk V] € B

&(x,v) =
m d-output Stein witness

g(v) = Exeq€(x,v) € RY.

m General form:

J
1
FSSD? = > lls(v))l3,
j=1

o —

where unbiased estimator FSSD? computable in O(d?Jn).
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Asymptotic Distributions of FSSD?

m 7(x) := vertically stack £(x,v1),...£&(x,v,) € R¥. Feature vector of x.
m Mean feature: p := Eyx4[7(x)]; FSSD? = %Huﬂ%
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Asymptotic Distributions of FSSD2

m 7(x) := vertically stack £(x,v1),...£&(x,v,) € R¥. Feature vector of x.
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2
Ex~gBExing ||7(X)T7(x)]|; < 0.
1 Under Hy : p = q, asymptotically nFSSD? % Z:-jil(Ziz — 1w;.

Easy to simulate to get p-value.
Simulation cost independent of n.
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m 7(x) := vertically stack £(x,v1),...£&(x,v,) € R¥. Feature vector of x.
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Let Zy,..., Zqy = N(0,1), {w;}%, the eigenvalues of X,

2
Ex~gBExing ||7(X)T7(x)]|; < 0.
1 Under Hy : p = q, asymptotically nFSSD? % Z:-jil(Ziz — 1w;.

Easy to simulate to get p-value.
Simulation cost independent of n.

2 Under Hy : p # q, we have ﬁ(F/SSB2 — FSSD?) LN N(0,0%,) where

0,2_,1 = 4p" X p. Implies P(reject Ho) — 1 as n — oo.

But, how to estimate X,? No sample from p!

= Theorem: Using ¥, (computed with {x;}7_, ~ q) still leads to a
consistent test.
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Parameter Tuning

m Any random locations V = {vi,...,v,} work when n — 0. But, for finite
n, tuning will increase the performance.
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Parameter Tuning

m Any random locations V = {vi,...,v,} work when n — 0. But, for finite
n, tuning will increase the performance.
m Test power P(reject Hy | Hy true).
Proposition 2 (Approx. power for large n).

Under Hy, for large n and fixed threshold r, the test power P(reject Hy | Hy true)

— 2
P, (nFSSD? > r)~1— ¢ ( — fFSSD >

\/EUH1 O Hyq
where ® = CDF of N'(0, 1).
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Parameter Tuning

m Any random locations V = {vi,...,v,} work when n — 0. But, for finite
n, tuning will increase the performance.
m Test power P(reject Hy | Hy true).
Proposition 2 (Approx. power for large n).

Under Hy, for large n and fixed threshold r, the test power P(reject Hy | Hy true)

S FSSD?
Py, (nFSSD2 > r %1—<D< = >
H1( ) \/EUHl \f o
where ® = CDF of N'(0, 1).
m For large n, second term dominates. So
FSSD2
arg max (power) = arg max .
V,o2 Vo2 OH

m Split {x;}7_; into independent training/test sets. Optimize on tr.
Goodness-of-fit test on te.
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Interpretable Features: Chicago Crime

m n = 11957 robbery events in Chicago in 2016.
m Model spatial density with Gaussian mixtures.
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Interpretable Features: Chicago Crime

m n = 11957 robbery events in Chicago in 2016.

m Model spatial density with Gaussian mixtures.

FSSD

Optimization objective
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Interpretable Features: Chicago Crime

m n = 11957 robbery events in Chicago in 2016.

m Model spatial density with Gaussian mixtures.

No Gaussian tail on the right. Lake Michigan, sharp data boundary.
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Interpretable Features: Chicago Crime

m n = 11957 robbery events in Chicago in 2016.

m Model spatial density with Gaussian mixtures.

Fit a 10-component Gaussian mixture — p.
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Interpretable Features: Chicago Crime

m n = 11957 robbery events in Chicago in 2016.

m Model spatial density with Gaussian mixtures.

Capture the right tail better.
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Interpretable Features: Chicago Crime

m n = 11957 robbery events in Chicago in 2016.
m Model spatial density with Gaussian mixtures.

Still does not capture the left tail.

FSSD features (test locations) are interpretable.
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Simulation Settings

2
. X—Vv
m Gaussian kernels k(x,v) = exp (—7” 202“2)
k

Method Description

1 FSSD-opt Proposed. With optimization. O(n).
2 FSSD-rand Proposed. Random test locations.

3 KSD Quadratic-time kernel Stein discrepancy

[Liu et al., 2016, Chwialkowski et al., 2016]
4 LKS Linear-time running average version of KSD.
MMD two-sample test [Gretton et al., 2012]. With

5 MMD-opt T e
optimization.
6  ME-test M.ean En.*nb(.eddl.ngs two-sample test [Jitkrittum et al., 2016].
With optimization.
m FSSD tests use J = 5 locations.
m Two-sample tests need to draw sample from p.
m Tests with optimization use 20% of the data.
m « = 0.05. 200 trials.
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Gaussian vs. Laplace

m p = Gaussian. g = Laplace. Same mean and variance. High-order

moments differ.
m Sample size n = 1000.

—_
)

Rejection rate
jan)
(@

=
o

1 5 10 15
dimension d

m Optimization increases the power.

FSSD-opt
FSSD-rand
KSD

LKS
MMD-opt
ME-opt

m Two-sample tests can perform well in this case (p, g clearly differ).
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Gaussian-Bernoulli Restricted Boltzmann Machine (RBM)

m p(x) is the marginal of
p(x,h) = % exp <xTBh +b'x+c'x— ;|x||2) ,

where x € RY, h € {£1}9 is latent. Randomly pick B, b, c.
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Gaussian-Bernoulli Restricted Boltzmann Machine (RBM)

m p(x) is the marginal of

1 1
p(x,h) = — exp <xTBh +b'x+c'x— 2|x||2) ,

where x € RY, h € {£1}9 is latent. Randomly pick B, b, c.
m g(x) = p(x) with i.i.d. N(0,0per) noise added to all entries of B.

m Sample

Rejection rate
< =
ot S

<
o

size n = 1000. d = 50, d, = 40.

0.00 002 0.04 0.06

Perturbation o,

FSSD-opt
FSSD-rand
KSD

LKS
MMD-opt
ME-opt

KSD, FSSD-opt comparable. LKS has low power.
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Harder RBM Problem

m Now, perturb only one entry of B € R50x40,

m By Bi1+N(0,02, = 0.1%). Entries of B are random {—1,1}.

2 0.757
=
‘5 0.501
E
£0.25
a'ad
‘=‘=—_¢-ﬁﬁ
0.00 2000 4000

Sample size n

FSSD-opt
FSSD-rand
KSD

LKS
MMD-opt
ME-opt

m Two-sample tests fail. Samples from p, g look roughly the same.

m FSSD-opt is comparable to KSD at low n. One order of magnitude faster.
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300
—=—  FSSD-opt
=200 --a--  FSSD-rand
qé 100 —e— KSD
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—<+— MMD-opt
1%00 2000 3000 4000
Sample size n ¢ ME-opt

m Two-sample tests fail. Samples from p, g look roughly the same.
m FSSD-opt is comparable to KSD at low n. One order of magnitude faster.
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope = rate of p-value — 0 under H; as n — cc.
m Measure a test’s sensitivity to the departure from Hp.
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Bahadur Slope and Bahadur Efficiency
m Bahadur slope = rate of p-value — 0 under H; as n — cc.
m Measure a test's sensitivity to the departure from Hp.
Ho :0 = 0,
H1 :0 75 0.

m Typically pval, ~ exp (—3c(0)n) where c(#) > 0 under Hy, and c(0) = 0.
[Bahadur, 1960].
m c(0) higher = more sensitive. Good.

1.0

—— p-value of T,E,l)

——— p-value of 7

p-value
o
Ut

0.0

0 50 100
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m Bahadur slope = rate of p-value — 0 under H; as n — cc.
m Measure a test's sensitivity to the departure from Hp.
Ho :0 = 0,
H1 :0 75 0.

m Typically pval, ~ exp (—3c(0)n) where c(#) > 0 under Hy, and c(0) = 0.
[Bahadur, 1960].
m c(0) higher = more sensitive. Good.

1.0
Bahadur slope

—— p-value of T,E,l)

I 1-F(T,
c(0) := —2plim log (1 = F(Tx)) )),
n— o0 n

where F(t) = CDF of T, under Hp.

m Bahadur efficiency = ratio of slopes of
two tests.

——— p-value of 7

p-value
o
Ut

0.0

0 50 100
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Bahadur Slopes of FSSD and LKS

Theorem 2.

The Bahadur slope of nFSSD? /s
c("SSD) . — FSSD? /wy,

where wy is the maximum eigenvalue of X, := covyp[T(X)].
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Bahadur Slopes of FSSD and LKS

Theorem 2.

The Bahadur slope of nFSSD? /s
c("SSD) . — FSSD? /wy,
where wy is the maximum eigenvalue of X, 1= covyp[T(X)].

Theorem 3.

The Bahadur slope of the linear-time kernel Stein (LKS) statistic ﬁg? is

1 [Eqhy(x, X))

C(LKS)
2E, [hg(x,x’)] ’

where hy, is the U-statistic kernel of the KSD statistic.

m Let's consider a specific case . ..
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N (pq, 1).
m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth = o7)

2 (v=ng)?
o (72
o? (af—|—2) /12e i+ DA

JE AL +1) (of + 40t 1 (4 5)oF+2)

(FSSD)(I“

qVU%)
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N (pq, 1).
m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth = o7)

2 (v=ng)?
2 2 2 o242 o241
Uk(ak4—2) pge’k k

&+ 1(02+1) (0F + 40} + (v +5) 07 +2)
m For LKS, Gaussian kernel (bandwidth = x2).

5/2 5/2
c(LKS) (), -2y — (v?)"" (k> +4)" " n g
@ 2 (K2 +2) (K8 + 8KO + 21K* + 20K2 + 12)°

(FSSD)(I“

q Vv C’%)
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N (pq, 1).
m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth = o7)

2 (v=nq)?

o? (af—|—2) /12e”k*2 okt
&+ 1(02+1) (0F + 40} + (v +5) 07 +2)
m For LKS, Gaussian kernel (bandwidth = x2).

5/2 5/2
c(LKS) (), -2y — (v?)"" (k> +4)" " n g
@ 2 (K2 +2) (K8 + 8KO + 21K* + 20K2 + 12)°

C(FSSD)(

g v, 0%) =

Theorem 4 (FSSD is at least two times more efficient).
m Fixos =1 for nFSSD2,
Then, Vg # 0, 3v € R, V&2 > 0, we have Bahadur efficiency

FSD) i v,0f)

cOKS) (114: 1)
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Conclusions

m Proposed The Finite Set Stein Discrepancy (FSSD).
m Goodness-of-fit based on FSSD is

1 nonparametric,

2 linear-time,

3 adaptive (parameters automatically tuned),
4 interpretable.

m When p = N(0,1),g = N (1q,1), FSSD is theoretically at least two times
more efficient (Bahadur efficiency) than LKS.

A Linear-Time Kernel Goodness-of-Fit Test.
Wittawat Jitkrittum, Wenkai Xu, Zoltan Szabd, Kenji Fukumizu, Arthur Gretton

https://arxiv.org/abs/1705.07673

m Python code: https://github.com/wittawatj/kernel-gof
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https://arxiv.org/abs/1705.07673
https://github.com/wittawatj/kernel-gof

Questions?

Thank you
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Linear-Time Kernel Stein Discrepancy (LKS)

m [Liu et al., 2016] also proposed a linear version of KSD.

m For {x;}"_; ~ g, KSD test statistic is

G2 X
S —mth(x,,xJ).

i<j

m LKS test statistic is a “running average”

. 5 n/2
7= - Z hp(x2i—1,%2;).
i—1

m Both unbiased. LKS has O(d?n) runtime.
m X LKS has high variance. Poor test power.
We will show this empirically and theoretically.
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FSSD and KSD in 1D Gaussian Case

Consider p = N(0,1) and g = N (g, 07).

m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth = 7).

(V*“a)z

(R g+ v (0 - 1))°

(02 +02)°

2
e
FSSD? — 2k

0241
m I f1g#0,02 41, and v = —M then FSSD? = 0 |

This is why v should be drawn from a distribution with a density.
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Consider p = N(0,1) and g = N (g, 07).

m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth = 7).

(V*“a)z

(R g+ v (0 - 1))°

(02 +02)°

2
e
FSSD? — 2k

0241
m If g #£0,02 41, and v = —((;ng)‘q, then FSSD? = 0 |

This is why v should be drawn from a distribution with a density.

m For KSD, Gaussian kernel (bandwidth = ?2).

o A2 4 (312

(K2 +202) i+

K2
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[llustration: Optimization Objective

m Consider J =1 location. In R,
m Training objective FSSD( ()V) (gray), p in wireframe, {x;}7_; ~ g in purple,

* = best v.
(o3 ) men0 (3 9))
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[llustration: Optimization Objective

m Consider J = 1 location. In R2.

FSSD (v)

m Training objective 0 (gray), p in wireframe, {x;}7_; ~ g in purple,

K = best v.

p =N (0,1) vs. g = Laplace with same mean & variance.

FSSD?/677,

0.16
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Statistical Model Criticism with MMD

MMD(p, q) = ||f*||*> = supy s ~<1[Epf — Epf]

— p(x)
— q(x)
— [*(%)
-0.2
-0.3

*(x) is the witness function
Can we compute MMD with samples from g and a model p?
Problem: usually can't compute E,f in closed form.
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Proof of Stein Idea

Consider the class

G = {0.f + f(Oxlog p)|f € F}

Given g € G, then (integration by parts)

Epg(X) =E, [0xf(X) + f(X)Ox log p(X)]
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Proof of Stein Idea

Consider the class

G = {0.f + f(Oxlog p)|f € F}

Given g € G, then (integration by parts)

Epg(X) = Ep [0xF(X) + (X)0x log p(X)]

/af L p(x)dx

—/_oo(()())dx

= [F)P(I="
=0
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Kernel Stein Discrepancy

Stein operator
Tof = Oxf + fOx(log p)

Kernel Stein Discrepancy (KSD)

MSD(p,q,F) = sup EqTp,g —E,Tpg
llgllz<1
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