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What Is Independence Testing?
m Let X € R%, Y € R% be random vectors following Py .
m Given a joint sample {(x;,y;)}7-; ~ Pgy (unknown), test
Hy 1Py = P, Py,
vs. Hy :Ppy # P Py.

Py = Py Py equivalent to X L Y.
Compute a test statistic A,. Reject Hy if A, > T (threshold).
Ts = (1 — a)-quantile of the null distribution.
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m Given a joint sample {(x;,y;)}7-; ~ Pgy (unknown), test
Hy :Pyy = P, Py,
vs. Hy :Ppy # P Py.
m Py, = P, P, equivalent to X 1 Y.
m Compute a test statistic An. Reject Hy if A, > T (threshold).
m T, = (1 — a)-quantile of the null distribution.
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3 Adaptive i.e., has a well-defined criterion for parameter tuning.

Non-parametric O(n) Adaptive

Pearson correlation

HSIC [Gretton et al., 2005]

HSIC with RFFs* [Zhang et al., 2016]
FSIC (proposed)

*: RFFs = Random Fourier Features
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m Focus on cases where n (sample size) is large.
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Witness Function [Gretton et al., 2012]

m A function showing the differences of two distributions P and Q.

m Gaussian kernel: k(x,Vv) = exp (—”X;%”rz)

» Empirical mean embedding of P: gp(v) = 1 3% | k(x;, V)
®m Maximum Mean Discrepancy (MMD): ||u||RKHs
MMD(P, Q) =0 if and only if P = Q.

(v) = witness(v) = fip(v) — fig(V)
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Independence Test with HSIC [Gretton et al., 2005]

m Hilbert-Schmidt Independence Criterion.
HSIC(X, Y) = MMD( Py, Pz Py) = ||u||rkHus
(need two kernels: k for X, and [ for Y).
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Independence Test with HSIC [Gretton et al., 2005]

m Hilbert-Schmidt Independence Criterion.
HSIC(X, Y) = MMD( P4y, P Py) = ||u|lrkus

(need two kernels: k for X, and [ for Y).
m Empirical witness:

~

’&(V, W) = ,E":Ey(v: W) - ﬂx(v):u'y(w)

where figy (v, W) = 7 320y k(xi, v)U{ys, W).

fozy(V, W) for (V) oy (W) Witness (v, w)
m HSIC(X, Y) =0 if and only if X and Y are independent.
m Test statistic = ||%||rkus (“fatness” of 4). Complexity: O(n?).

Key: Can we measure the flatness by other way that costs only O(n)?
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Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate 42(v,w) at only finitely many test locations.

m A set of random J locations: {(vi,w1),...,(vs, W)}

7/29



Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate 72(v,w) at only finitely many test locations.

m A set of random J locations: {(vi,w1),...,(vs, W)}

m FSICX(X, V) = 1527, 42(vs, W)

-

N

0.024
0.021
0.018
0.015
0.012
0.009
0.006
0.003
0.000

7/29



Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate 72(v,w) at only finitely many test locations.

m A set of random J locations: {(vi,w1),...,(vs, W)}

m FSICX(X, V) = 1527, 42(vs, W)
0.024

0.021
0.018
0.015

0.012

0.009
0.006
0.003

0.000

m Complexity: O((d; + dy)Jn). Linear time.

7/29



Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate 72(v,w) at only finitely many test locations.

m A set of random J locations: {(vi,w1),...,(vs, W)}

m FSICX(X, V) = 1527, 42(vs, W)
0.024

0.021
0.018
0.015

0.012

0.009
0.006
0.003

0.000

m Complexity: O((d; + dy)Jn). Linear time.
m But, what about an unlucky set of locations??
o Can FSIC?(X,Y) =0 even if X and Y are dependent??

7/29



Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate 72(v,w) at only finitely many test locations.

m A set of random J locations: {(vi,w1),...,(vs, W)}

m FSICX(X, V) = 1527, 42(vs, W)
0.024

0.021
0.018
0.015

0.012

0.009
0.006
0.003

0.000

m Complexity: O((d; + dy)Jn). Linear time.
m But, what about an unlucky set of locations??
o Can FSIC?(X,Y) =0 even if X and Y are dependent??

7/29



Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate 72(v,w) at only finitely many test locations.

m A set of random J locations: {(vi,w1),...,(vs, W)}
] F@(X, Y)= %E{Zl 22 (vi, wy)
0.024
0.021
0.018
0.015
0.012
0.009
0.006
0.003
0.000
m Complexity: O((d; + dy)Jn). Linear time.
m But, what about an unlucky set of locations??
o Can FSIC?(X,Y) =0 even if X and Y are dependent??
m No. Population FSIC(X, Y)=0iff X 1 Y, almost surely.
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Requirements on the Kernels

Definition 1 (Analytic kernels).

k: X x X — R is said to be analytic if for all x € X, v — k(x, V) is a real
analytic function on X.

m Analytic: Taylor series about xg converges for all xg € X.

B — k is infinitely differentiable.
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Requirements on the Kernels

Definition 1 (Analytic kernels).

k: X x X — R is said to be analytic if for all x € X, v — k(x, V) is a real
analytic function on X.

m Analytic: Taylor series about xg converges for all xg € X.

B — k is infinitely differentiable.

Definition 2 (Characteristic kernels).

m Let P, Q be two distributions, and g be a kernel.
m Let pp(v) = Egnplg(z,v)] and po(v) := Eunolg(z, v)].
g is said to be characteristic if P # Q implies pup # pg.

Space of distributions RKHS
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F'SIC Is a Dependence Measure

Proposition 1.
Assume
1 The product kernel g((x,y), (x,y")) := k(x,x)(y,y") s
characteristic and analytic (i.e., k,l are Gaussian kernels).

2 Test locations {(vi,w;)}]_; ~n where n has a density.
Then, n-almost surely, FSIC(X,Y) =0 uff X and Y are independent.
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F'SIC Is a Dependence Measure

Proposition 1.
Assume
1 The product kernel g((x,y), (x,y")) := k(x,x)(y,y") s
characteristic and analytic (i.e., k,l are Gaussian kernels).

2 Test locations {(vi,w;)}]_; ~n where n has a density.
Then, n-almost surely, FSIC(X,Y) =0 uff X and Y are independent.

- [lfgy(V,\V)
—  fpfip,(V, W)

— @(v,w)

(v, w)

m Under Hi, u is not a zero function (P — E,.p[g(z, )] is injective).

® u is analytic. So, R, = {(v,w) | u(v,w) = 0} has 0 Lebesgue measure.
m So, {(vi,w;)}_, ~n will not be in R, (with probability 1).
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Alternative View of the Witness u(v, w)

The witness u(v, w) can be rewritten as

u(v, W) 1= phay (v, W) — pa (V) gy (W)
= By [k, V) Uy, w)] — B[k, v)]Ey Ly, W),
= COny[k(X» v), iy, W)]
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Alternative View of the Witness u(v, w)

The witness u(v, w) can be rewritten as

u(V, W) = fhoy(V, W) — fig (V) sy (W)
:Exy[k( v)i(y, w)] — EX[k(X:V)]Ey[Z(Y1W)]’

= covxy[k(x, ), iy, W)].

1 Transforming x — k(x,v) and y — I(y,w) (from R% to R).

2 Then, take the covariance.

The kernel transformations turn the linear covariance into a
dependence measure.
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Alternative Form of 4(v, w)

m Recall FSIC? = %Z;]:l vy, wy)?
m Let fzuy (v, w) be an unbiased estimator of pg(v)uy(Ww).
B fofiy(v, W) = ﬁ 211 2j#i k(xqi, v)Uy;, w).
® An unbiased estimator of u(v,w) is
a(v,w) = /:Lzy(V, w) — /-Z/J'\y(vv w)

= ﬁ Z h(V,w)((Xi,yi)’ (X]1YJ)),

1<J

where

h’(v,w)((x) y)) (XI’ y/)) = %(k:(x, V) - k(xl7 V))U(Y) W) - l(y/: W))

m For a fixed (v, w), 4(v,w) is a one-sample 2"¢-order U-statistic.
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— 1 N 1 +.
FSIC2(X,Y) = 5 ; w2 (vi, wy) = juTu,
where @ = (a(vy, w1),..., @(vs,wJ))"

Proposition 2 (Asymptotic distribution of ).

For any fized locations {(v;,w;)};_,, we have v/n(i — u) LA N(0,%).
m Dy = By [k(x, vi) Iy, wa)k(x, v;) 1y, w;)] — u(vi, wi)u(vj, wj),
B k(x,v):=k(x,v) — Exk(x, V),
m iy, w):=Il(y,w) — Eyi(y’, w).

Under Hp,

nF/SiE2 = %ﬁTﬁ ~ weighted sum of dependent 2 variables.

m Difficult to get (1 — a)-quantile for the threshold.
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Normalized FSIC (NFSIC)

NFSIC3(X, V) = An = nat (84 4,1) g,
with a regularization parameter v, > 0.
m Key: NFSIC = FSIC normalized by the covariance.
Theorem 1 (NFSIC test is consistent).

Assume

1 The product kernel is characteristic and analytic.

Bl lim,, ,o v = 0.

Then, for any k,l and {(Vz‘,Wz‘)}ij:l ~ 7,
1 Under Ho, An % x2(J) as n — .

2 Under Hi, lim, .o P (5\71 > Ta) =1, n-almost surely.

Asymptotically, false positive rate is at a under Hy, and always reject

under Hj.
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An Estimator of N?SI\C2

m Test locations {(v;, w;)}_; ~ 7.

m K = [k(vi,x;)] € RIX™®
[l(ws,y;)] € R7*™. (No n x n Gram matrix.)

m L=
Estimators
- KoL)1, K1,)o(L1,
(o= DL (k)

2 3= FP where I' .= (K — n 'K1,1))o (L — n 'L1,1)) — a1, .
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An Estimator of N?SI\C2
An = ni’ (z: + fan)*l L,

m Test locations {(vi,wi)}gzl ~ .
u K = [k(vi,x;)] € RI¥
m L =[l(w;,y;)] € R7*". (No n x n Gram matrix.)

Estimators
. (KoL)l, (K1,)o(L1,)
tu="—-—1 — n(n—1) °

2 3= % where I' .= (K — n 'K1,1))o (L — n 'L1,1)) — a1, .

m )\, can be computed in O(J% + J?n + (d; + dy)Jn) time.

Main Point: Linear in n. Cubic in J (small).
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m Test NFSIC? is consistent for any random locations {(v;, w;)}/_;.
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Optimizing Test Locations {(v;, w;)}/;

m Test NFSIC? is consistent for any random locations {(v;, w;)}/_;.
m In practice, tuning them will increase the test power.

Under Hi, A, will be large. Follows some distribution Py, (A,)

— X’(J)
e Ta

- PHl()A‘n)
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Idea: Pick locations and Gaussian widths
to maximize (lower bound of) test power.
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Optimization Objective = Power Lower Bound

m Recall A, := na' (f} + ’YnI) 1.
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Optimization Objective = Power Lower Bound

m Recall A, := na' (il + ’)’nI) 1.

Theorem 2 (A lower bound on the test power).
m Let NFSIC?(X,Y) := A, := nu' 27w
With some conditions, for any k, 1, and {(v;,w;)};_,, the test power
satisfies P (Xn > Ta) > L(XA,) where
L(An) = 1 — 62~ 67(n=Ta)?/n _ 9o=1057](n—Ta)?/[¢2n]

_ 26*[(%* Ta)’)’n(nfl)/3*f3n*0377%"("*1)]2/[54#@*1)]

?

where £1,...,64,c3 > 0 are constants. For large n, L(\,) is increasing
m Ap.
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Optimization Objective = Power Lower Bound

m Recall A, := na' (i] + ’)’nI) 1.

Theorem 2 (A lower bound on the test power).
m Let NFSIC}(X,Y) := Ay := nu' 27 u.
With some conditions, for any k, 1, and {(v;,w;)};_,, the test power
satisfies P (Xn > Ta) > L(XA,) where
L(An) = 1 — 62~ 67(n=Ta)?/n _ 9o=1057](n—Ta)?/[¢2n]

_ 26*[(%* Ta)’)’n(nfl)/3*f3n*0377%"("*1)]2/[54”2(”*1)]

?

where £1,...,64,c3 > 0 are constants. For large n, L(\,) is increasing
m Ap.

Do: Locations and Gaussian widths = argmax L(),,) = arg max A,
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Optimization Procedure

m NFSIC?(X, Y):= A, := nu'Z 'u is unknown.
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Procedure:
1 Estimate A, with )\ (1 e., computed on the training set).
2 Optimize all {(v;,w;)};_, and Gaussian widths with gradient ascent.

3 Independence test with 5\%6). Reject Hj if Xﬁfe) > Ty

m Splitting avoids overfitting.
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Optimization Procedure

m NFSIC?(X, Y):= A, := nu' & 'u is unknown.
m Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:
1 Estimate A, with )\ (1 e., computed on the training set).
2 Optimize all {(v;,w;)};_, and Gaussian widths with gradient ascent.

3 Independence test with 5\%6). Reject Hj if Xﬁfe) > Ty

m Splitting avoids overfitting.

But, what does this do to P(A, > T,) when Hy holds?

m Still asymptotically at a.

m ), =0iff X, Y independent.

m So, under Hy, we do arg max 0 = arbitrary locations.

m Asymptotic null distribution is x2(J) for any locations.
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Demo: 2D Rotation
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Demo: Sin Problem (w = 1)
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Simulation Settings

m n = full sample size
m All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method Description Tuning Test size  Complex.

NFSIC-opt Proposed Gradient descent n/2 O(n)
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Simulation Settings

m n = full sample size

m All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method Description Tuning Test size  Complex.
NFSIC-opt Proposed Gradient descent n/2 O(n)
NFSIC-med  No tuning. Random locations n O(n)
QHSIC Full HSIC Median heu. n O(n?)
NyHSIC NyStrom HSIC Median heu. n O(n)
FHSIC HSIC + RFFs* Median heu. n O(n)
RDC RFFs + CCA Median heu. n O(nlogn)

* : Random Fourier features

m Given a problem, report rejection rate of Hy.
m 10 features for all (except QHSIC). J = 10 in NFSIC.
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Toy Problem 1: Independent Gaussians

m X ~N(0,Iz)and Y ~N(0,Ig).
m Independent X, Y. So, Hp holds.
m Set o :=0.05, d; = dy = 250.
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m Correct type-I errors (false positive rate).
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m X ~N(0,Iz)and Y ~N(0,Ig).
m Independent X, Y. So, Hp holds.
m Set o :=0.05, d; = dy = 250.

|*—= NFSIC-opt =-= NFSIG-med e QHSIC +—~+ NyHSIC e— FHSIC +— RDC]|
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@ 0.06}
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0.02 : £ >

103 10* 10° 103 10* 10°

Sample size n Sample size n

103}

m Correct type-I errors (false positive rate).
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Toy Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, ).
m Local changes between p;, and p;py.
m Set n = 4000.
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Toy Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, 7).
m Local changes between p;, and p;py.
m Set n = 4000.
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Toy

Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, 7).

Local changes between p;, and p,py.

Set n = 4000.
. ' _w=3.00 .
e ®e®
o @®e®@e
e @®e®
L X K N X
, D@ e ®
‘3"3. 2. 1. 6.i ‘z'
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Toy Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, 7).

Local changes between p;, and p,py.

Set n = 4000.
w=4.00

KX KX KX K
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Toy Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, 7).

m Local changes between p;, and p;py.

m Set n = 4000.
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Toy Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, 7).

m Local changes between p;, and p;py.

m Set n = 4000.
|'—' NFSIC-opt =.-m NFSIC-med e—e (QHSIC #»—=« NyHSIC +—e FHSIC — RDC|
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Toy Problem 2: Sinusoid

B pry(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, 7).
m Local changes between p;, and p;py.
m Set n = 4000.

|-—- NFSIC-opt  =-= NFSIC-med e— QHSIC =+ + NyHSIC e—e FHSIC  +— RDC|
1.0 . 3F . w=4.00 -
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w in 1+ sin(wz)sin(wy) x

Main Point: NFSIC can handle well the local changes in the joint space. I
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Toy Problem 3: Gaussian Sign

m y = |Z|[]%, sign(z;), where x ~ N(0, I,) and Z ~ N(0,1) (noise).
m Full interaction among z,..., z4,.

m Need to consider all z3, ..

1.0

Test power
© o o ©
N H [e)} [0}

o
(=]

‘103

., 4 to detect the dependency.

Sample size n

NFSIC-opt
NFSIC-med
QHSIC
NyHSIC
FHSIC

RDC

23/29



Toy Problem 3: Gaussian Sign

m y = |Z|[]%, sign(z;), where x ~ N(0, I,) and Z ~ N(0,1) (noise).

m Full interaction among z,..., z4,.

m Need to consider all zi, ..., z; to detect the dependency.

1.0

=—=a NFSIC-opt

08 == NFSIC-med
% 0.6 —e QHSIC
a =  NyHSIC
g0 — FHSIC

0.2 +~—— RDC

0-03 10° 10°

Sample size n

Main Point: NFSIC can handle feature interaction. I
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HSIC vs. FSIC

Recall the witness

UV, W) = flay (v, W) = (V) iy (w).

HSIC [Gretton et al., 2005]
= [|%/[rxns

— witness

(v, w)

Good when difference between
Dy and p.ypy is spatially diffuse.

m 4 is almost flat.

FSIC [proposed|
= % E:L]Zl ﬁZ(Vi, Wi)

— witness

(v, w)

*

Fede
Good when difference between
Pzy and pgypy is local.

m 4 is mostly zero, has many
peaks (feature interaction).
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Real Problem 1: Million Song Data
Song (X)) vs. year of release (Y').

m Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].

m X € R contains audio features.

m Y € R is the year of release.
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Real Problem 1: Million Song Data
Song (X)) vs. year of release (Y').

m Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].

m X € R contains audio features.

m Y € R is the year of release.

|l—- NFSIC-opt =.-8 NFSIC-med e—e QHSIC »—=+ NyHSIC +—+ FHSIC ~— RDC
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Sample size n Sample size n
m Break (X, Y) pairs to simulate m H is true.

Hy.
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Real Problem 2: Videos and Captions

Youtube video (X) vs. caption (V).

m VideoStory46K [Habibian et al., 2014]

m X € R?%0: Fisher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].

m Y € R'®7: bag of words. TF.
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Real Problem 2: Videos and Captions

Youtube video (X) vs. caption (V).

m VideoStory46K [Habibian et al., 2014]
m X € R?%0: Fisher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].
m Y € R'®7: bag of words. TF.
|=—= NFSIC-opt == NFSIC-med — QHSIC +—+ NyHSIC e— FHSIC +— RDC
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m Break (X, Y) pairs to simulate m H; is true.
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Penalize Redundant Test Locations

m Consider the Sin problem. Use J = 2 locations.
m Optimization objective: An.
m Write t = (v, w). Fix t; at %. Plot t; — j\n(tl,tz).

| . Sample =—— t, trajectory Y t1|

2.00
1.75
1.50
1.25 >
100 2 e N Py -.‘zu
0.75 250} ' '
0.50
0.25
0.00

At to)

200}

m The optimized tq, t; will not be in the same neighbourhood.
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Test Power vs. J

m Test power does not always increase with J (number of test locations).
m n = 800.

w= 200 1.0
3F T T T |
Yee@e .
L | @
oG e® -
(=}
= O 3‘
[
rtTe@®@e® -
@ . ®@e® -
—3L J i i i i i
-3 2 1 2 3 100 200 300 400 500 600

m Accurate estimation of 33 € R/*7 in \,, = ni1 ' (f} + ’an) 1l becomes
more difficult.

m Large J defeats the purpose of a linear-time test.
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Conclusions

m Proposed The Finite Set Independence Criterion (FSIC).
m Independece test based on FSIC is

1 non-parametric,
2 linear-time,
3 adaptive (parameteris automatically tuned).
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Conclusions

m Proposed The Finite Set Independence Criterion (FSIC).
m Independece test based on FSIC is

1 non-parametric,
2 linear-time,
3 adaptive (parameteris automatically tuned).

Future works

m Any way to interpret the learned {(v;, w;)};/_,?
m Relative efficiency of FSIC vs. block HSIC, RFF-HSIC.

https://github.com/wittawatj/fsic-test
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Questions?

Thank you
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