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What Is Independence Testing?

Let X 2 Rdx ;Y 2 Rdy be random vectors following Pxy .
Given a joint sample f(xi ;yi )gni=1 � Pxy (unknown), test

H0 :Pxy = PxPy ;

vs. H1 :Pxy 6= PxPy :

Pxy = PxPy equivalent to X ? Y .
Compute a test statistic �̂n . Reject H0 if �̂n � T� (threshold).
T� = (1� �)-quantile of the null distribution.
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Goals

Want a test which is : : :

1 Non-parametric i.e., no parametric assumption on Pxy .

2 Linear-time i.e., computational complexity is O(n). Fast.

3 Adaptive i.e., has a well-defined criterion for parameter tuning.

Non-parametric O(n) Adaptive

Pearson correlation 7 3 3

HSIC [Gretton et al., 2005] 3 7 7

HSIC with RFFs� [Zhang et al., 2016] 3 3 7

FSIC (proposed) 3 3 3
� : RFFs = Random Fourier Features

Focus on cases where n (sample size) is large.
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Witness Function [Gretton et al., 2012]

A function showing the differences of two distributions P and Q .
Gaussian kernel: k(x;v) = exp

�
�kx�vk2

2�2

�

Empirical mean embedding of P : �̂P (v) = 1
n
Pn

i=1 k(xi ;v)
Maximum Mean Discrepancy (MMD): kûkRKHS.

� MMD(P ;Q) = 0 if and only if P = Q .
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Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w)

where �̂xy(v;w) = 1
n
Pn

i=1 k(xi ;v)l(yi ;w).

�̂xy(v;w)

�
�̂x (v)�̂y(w)

=

Witness û(v;w)

HSIC(X ;Y ) = 0 if and only if X and Y are independent.
Test statistic = kûkRKHS (“flatness” of û). Complexity: O(n2).

Key: Can we measure the flatness by other way that costs only O(n)?
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Key: Can we measure the flatness by other way that costs only O(n)?

6/29



Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:
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Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate û2(v;w) at only finitely many test locations.

A set of random J locations: f(v1;w1); : : : ; (vJ ;wJ )g
\FSIC2(X ;Y ) = 1

J
PJ

i=1 û
2(vi ;wi )

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

Complexity: O((dx + dy)Jn). Linear time.
But, what about an unlucky set of locations??

� Can FSIC2(X ;Y ) = 0 even if X and Y are dependent??

No. Population FSIC(X ;Y ) = 0 iff X ? Y , almost surely.
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2(vi ;wi )

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

Complexity: O((dx + dy)Jn). Linear time.
But, what about an unlucky set of locations??

� Can FSIC2(X ;Y ) = 0 even if X and Y are dependent??

No. Population FSIC(X ;Y ) = 0 iff X ? Y , almost surely.

7/29



Proposal: The Finite Set Independence Criterion (FSIC)
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Requirements on the Kernels
Definition 1 (Analytic kernels).
k : X � X ! R is said to be analytic if for all x 2 X , v ! k(x;v) is a real
analytic function on X .

Analytic: Taylor series about x0 converges for all x0 2 X .

=) k is infinitely differentiable.

Definition 2 (Characteristic kernels).
Let P ;Q be two distributions, and g be a kernel.

Let �P (v) := Ez�P [g(z;v)] and �Q(v) := Ez�Q [g(z;v)].

g is said to be characteristic if P 6= Q implies �P 6= �Q .

P

Q
}MMD(P,Q)MMD(P,Q)

RKHSSpace of distributions

µP

µQ
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FSIC Is a Dependence Measure
Proposition 1.
Assume

1 The product kernel g((x;y); (x0;y0)) := k(x;x0)l(y;y0) is
characteristic and analytic (i.e., k ; l are Gaussian kernels).

2 Test locations f(vi ;wi )gJi=1 � � where � has a density.

Then, �-almost surely, FSIC(X ;Y ) = 0 iff X and Y are independent.

(v,w)

µ̂Pxy(v,w)

µ̂Px µ̂Py(v,w)

û2(v,w)

Under H1, u is not a zero function (P 7! Ez�P [g(z; �)] is injective).
u is analytic. So, Ru = f(v;w) j u(v;w) = 0g has 0 Lebesgue measure.
So, f(vi ;wi )gJi=1 � � will not be in Ru (with probability 1).
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û2(v,w)

Under H1, u is not a zero function (P 7! Ez�P [g(z; �)] is injective).
u is analytic. So, Ru = f(v;w) j u(v;w) = 0g has 0 Lebesgue measure.
So, f(vi ;wi )gJi=1 � � will not be in Ru (with probability 1).

9/29



FSIC Is a Dependence Measure
Proposition 1.
Assume

1 The product kernel g((x;y); (x0;y0)) := k(x;x0)l(y;y0) is
characteristic and analytic (i.e., k ; l are Gaussian kernels).

2 Test locations f(vi ;wi )gJi=1 � � where � has a density.

Then, �-almost surely, FSIC(X ;Y ) = 0 iff X and Y are independent.

Under H0,

µ̂Pxy(v,w)

µ̂Px µ̂Py(v,w)
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Alternative View of the Witness u(v;w)

The witness u(v;w) can be rewritten as

u(v;w) := �xy(v;w)� �x (v)�y(w)

= Exy[k(x;v)l(y;w)]� Ex[k(x;v)]Ey[l(y;w)];

= covxy[k(x;v); l(y;w)]:

1 Transforming x 7! k(x;v) and y 7! l(y;w) (from Rdy to R).

2 Then, take the covariance.

The kernel transformations turn the linear covariance into a
dependence measure.
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Alternative Form of û(v;w)

Recall \FSIC2 = 1
J
PJ

i=1 û(vi ;wi )
2

Let[�x�y(v;w) be an unbiased estimator of �x (v)�y(w).

[�x�y(v;w) := 1
n(n�1)

Pn
i=1

P
j 6=i k(xi ;v)l(yj ;w).

An unbiased estimator of u(v;w) is

û(v;w) = �̂xy(v;w)�[�x�y(v;w)

=
2

n(n � 1)

X
i<j

h(v;w)((xi ;yi ); (xj ;yj ));

where

h(v;w)((x;y); (x0;y0)) :=
1
2
(k(x;v)� k(x0;v))(l(y;w)� l(y0;w)):

For a fixed (v;w), û(v;w) is a one-sample 2nd -order U-statistic.
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Recall \FSIC2 = 1
J
PJ
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Asymptotic Distribution of û

\FSIC2(X ;Y ) =
1
J

JX
i=1

û2(vi ;wi ) =
1
J

û>û;

where û = (û(v1;w1); : : : ; û(vJ ;wJ ))
> :

Proposition 2 (Asymptotic distribution of û).

For any fixed locations f(vi ;wi )gJi=1, we have
p
n(û� u) d! N (0;�):

�ij = Exy[~k(x;vi )~l(y;wi )~k(x;vj )~l(y;wj )]� u(vi ;wi )u(vj ;wj ),
~k(x;v) := k(x;v)� Ex0k(x0;v),
~l(y;w) := l(y;w)� Ey0 l(y0;w).

Under H0,

n\FSIC2 =
n
J

û>û � weighted sum of dependent �2 variables.

Difficult to get (1� �)-quantile for the threshold.
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Normalized FSIC (NFSIC)

\NFSIC2(X ;Y ) = �̂n := nû>
�
�̂ + 
nI

��1
û;

with a regularization parameter 
n � 0.

Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).
Assume

1 The product kernel is characteristic and analytic.

2 limn!1 
n = 0.

Then, for any k ; l and f(vi ;wi )gJi=1 � �,

1 Under H0, �̂n
d! �2(J ) as n !1.

2 Under H1, limn!1 P
�
�̂n � T�

�
= 1, �-almost surely.

Asymptotically, false positive rate is at � under H0, and always reject
under H1.
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An Estimator of \NFSIC2

�̂n := nû>
�
�̂ + 
nI

��1
û;

Test locations f(vi ;wi )gJi=1 � �.
K = [k(vi ;xj )] 2 RJ�n
L = [l(wi ;yj )] 2 RJ�n . (No n � n Gram matrix.)

Estimators

1 û = (K�L)1n
n�1 � (K1n )�(L1n )

n(n�1) .

2 �̂ = ��>

n where � := (K� n�1K1n1>n ) � (L� n�1L1n1>n )� û1>n :

�̂n can be computed in O(J 3 + J 2n + (dx + dy)Jn) time.

Main Point: Linear in n . Cubic in J (small).
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�̂n can be computed in O(J 3 + J 2n + (dx + dy)Jn) time.

Main Point: Linear in n . Cubic in J (small).

14/29



An Estimator of \NFSIC2

�̂n := nû>
�
�̂ + 
nI

��1
û;
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�̂n can be computed in O(J 3 + J 2n + (dx + dy)Jn) time.

Main Point: Linear in n . Cubic in J (small).

14/29



Optimizing Test Locations f(vi ;wi)g
J
i=1

Test \NFSIC2 is consistent for any random locations f(vi ;wi )gJi=1.
In practice, tuning them will increase the test power.

0 20 40 60 80 100
^̧
n

Â2(J)

T®

ℙH1( ^̧n)

Idea: Pick locations and Gaussian widths
to maximize (lower bound of) test power.
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Optimization Objective = Power Lower Bound

Recall �̂n := nû>
�
�̂ + 
nI

��1
û.

Theorem 2 (A lower bound on the test power).

Let NFSIC2(X ;Y ) := �n := nu>��1u.

With some conditions, for any k ; l , and f(vi ;wi )gJi=1, the test power
satisfies P

�
�̂n � T�

�
� L(�n) where

L(�n) = 1� 62e��1
2
n (�n�T�)2=n � 2e�b0:5nc(�n�T�)

2=[�2n2]

� 2e�[(�n�T�)
n (n�1)=3��3n�c3
2
nn(n�1)]

2
=[�4n2(n�1)];

where �1; : : : ; �4; c3 > 0 are constants. For large n, L(�n) is increasing
in �n .

Do: Locations and Gaussian widths = argmaxL(�n) = argmax�n
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Optimization Procedure

NFSIC2(X ;Y ) := �n := nu>��1u is unknown.
Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

1 Estimate �n with �̂
(tr)
n (i.e., computed on the training set).

2 Optimize all f(vi ;wi )gJi=1 and Gaussian widths with gradient ascent.

3 Independence test with �̂
(te)
n . Reject H0 if �̂(te)n � T�.

Splitting avoids overfitting.

But, what does this do to P(�̂n � T�) when H0 holds?

Still asymptotically at �.
�n = 0 iff X ;Y independent.
So, under H0, we do argmax 0 = arbitrary locations.
Asymptotic null distribution is �2(J ) for any locations.
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Demo: 2D Rotation
µ̂xy(v,w)

µ̂x(v)µ̂y(w)

µ̂xy(v,w)− µ̂x(v)µ̂y(w) Σ̂(v,w)

λ̂n
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Demo: Sin Problem (! = 1)
µ̂xy(v,w)

µ̂x(v)µ̂y(w)

µ̂xy(v,w)− µ̂x(v)µ̂y(w) Σ̂(v,w)
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Simulation Settings

n = full sample size

All methods use Gaussian kernels for both X and Y .

Compare 6 methods

Method Description Tuning Test size Complex.

NFSIC-opt Proposed Gradient descent n=2 O(n)
NFSIC-med No tuning. Random locations n O(n)
QHSIC Full HSIC Median heu. n O(n2)

NyHSIC NyStrom HSIC Median heu. n O(n)
FHSIC HSIC + RFFs� Median heu. n O(n)
RDC RFFs + CCA Median heu. n O(n logn)

� : Random Fourier features

Given a problem, report rejection rate of H0.

10 features for all (except QHSIC). J = 10 in NFSIC.
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Toy Problem 1: Independent Gaussians

X � N (0; Idx ) and Y � N (0; Idy).

Independent X ;Y . So, H0 holds.

Set � := 0:05; dx = dy = 250.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC
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Correct type-I errors (false positive rate).
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Toy Problem 2: Sinusoid

pxy(x ; y) / 1+ sin(!x ) sin(!y) where x ; y 2 (��; �).
Local changes between pxy and pxpy .

Set n = 4000.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC
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Main Point: NFSIC can handle well the local changes in the joint space.
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Toy Problem 3: Gaussian Sign

y = jZ jQdx
i=1 sign(xi ), where x � N (0; Idy ) and Z � N (0; 1) (noise).

Full interaction among x1; : : : ; xdx .
Need to consider all x1; : : : ; xd to detect the dependency.
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Main Point: NFSIC can handle feature interaction.
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HSIC vs. FSIC
Recall the witness

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w):

HSIC [Gretton et al., 2005]
= kûkRKHS

(v,w)

witness

Good when difference between
pxy and pxpy is spatially diffuse.

û is almost flat.

FSIC [proposed]
= 1

J
PJ

i=1 û
2(vi ;wi )

(v,w)

witness

Good when difference between
pxy and pxpy is local.

û is mostly zero, has many
peaks (feature interaction).
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Real Problem 1: Million Song Data
Song (X ) vs. year of release (Y ).

Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].
X 2 R90 contains audio features.
Y 2 R is the year of release.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC
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Real Problem 2: Videos and Captions
Youtube video (X ) vs. caption (Y ).

VideoStory46K [Habibian et al., 2014]
X 2 R2000: Fisher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].
Y 2 R1878: bag of words. TF.
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Penalize Redundant Test Locations

Consider the Sin problem. Use J = 2 locations.
Optimization objective: �̂n .
Write t = (v;w). Fix t1 at F. Plot t2 ! �̂n(t1; t2).
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The optimized t1; t2 will not be in the same neighbourhood.
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Test Power vs. J

Test power does not always increase with J (number of test locations).

n = 800.
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Accurate estimation of �̂ 2 RJ�J in �̂n = nû>
�
�̂ + 
nI

��1
û becomes

more difficult.

Large J defeats the purpose of a linear-time test.
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Conclusions

Proposed The Finite Set Independence Criterion (FSIC).
Independece test based on FSIC is

1 non-parametric,
2 linear-time,
3 adaptive (parameteris automatically tuned).

Future works

Any way to interpret the learned f(vi ;wi )gJi=1?

Relative efficiency of FSIC vs. block HSIC, RFF-HSIC.

https://github.com/wittawatj/fsic-test
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Questions?

Thank you
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