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Abstract

A new computationally efficient dependence mea-
sure, and an adaptive statistical test of independence,
are proposed. The dependence measure is the differ-
ence between analytic embeddings of the joint distri-
bution and the product of the marginals, evaluated at
a finite set of locations (features). These features are
chosen so as to maximize a lower bound on the test
power, resulting in a test that is data-efficient, and
that runs in linear time (with respect to the sample
size n). The optimized features can be interpreted
as evidence to reject the null hypothesis, indicating
regions in the joint domain where the joint distri-
bution and the product of the marginals differ most.
Consistency of the independence test is established,
for an appropriate choice of features. In real-world
benchmarks, independence tests using the optimized
features perform comparably to the state-of-the-art
quadratic-time HSIC test, and outperform competing
O(n) and O(n log n) tests.

1. Introduction
We consider the design of adaptive, nonparametric statistical
tests of dependence: that is, tests of whether a joint distri-
bution Pxy factorizes into the product of marginals PxPy
with the null hypothesis that H0 : X and Y are indepen-
dent. While classical tests of dependence, such as Pearson’s
correlation and Kendall’s τ , are able to detect monotonic
relations between univariate variables, more modern tests
can address complex interactions, for instance changes in
variance of X with the value of Y . Key to many recent
tests is to examine covariance or correlation between data
features. These interactions become significantly harder to
detect, and the features are more difficult to design, when
the data reside in high dimensions.
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A basic nonlinear dependence measure is the Hilbert-
Schmidt Independence Criterion (HSIC), which is the
Hilbert-Schmidt norm of the covariance operator between
feature mappings of the random variables (Gretton et al.,
2005; 2008). Each random variable X and Y is mapped
to a respective reproducing kernel Hilbert space Hk and
Hl. For sufficiently rich mappings, the covariance operator
norm is zero if and only if the variables are independent. A
second basic nonlinear dependence measure is the smoothed
difference between the characteristic function of the joint
distribution, and that of the product of marginals. When
a particular smoothing function is used, the statistic corre-
sponds to the covariance between distances ofX and Y vari-
able pairs (Feuerverger, 1993; Székely et al., 2007; Székely
& Rizzo, 2009), yielding a simple test statistic based on
pairwise distances. It has been shown by Sejdinovic et al.
(2013) that the distance covariance (and its generalization
to semi-metrics) is an instance of HSIC for an appropriate
choice of kernels. A disadvantage of these feature covari-
ance statistics, however, is that they require quadratic time
to compute (besides in the special case of the distance co-
variance with univariate real-valued variables, where Huo &
Székely (2016) achieve an O(n log n) cost). Moreover, the
feature covariance statistics have intractable null distribu-
tions, and either a permutation approach or the solution of
an expensive eigenvalue problem (e.g. Zhang et al., 2011) is
required for consistent estimation of the quantiles. Several
approaches were proposed by Zhang et al. (2017) to obtain
faster tests along the lines of HSIC. These include comput-
ing HSIC on finite-dimensional feature mappings chosen as
random Fourier features (RFFs) (Rahimi & Recht, 2008),
a block-averaged statistic, and a Nyström approximation
to the statistic. Key to each of these approaches is a more
efficient computation of the statistic and its threshold under
the null distribution: for RFFs, the null distribution is a
finite weighted sum of χ2 variables; for the block-averaged
statistic, the null distribution is asymptotically normal; for
Nyström, either a permutation approach is employed, or
the spectrum of the Nyström approximation to the kernel
matrix is used in approximating the null distribution. Each
of these methods costs significantly less than theO(n2) cost
of the full HSIC (the cost is linear in n, but also depends
quadratically on the number of features retained). A poten-
tial disadvantage of the Nyström and Fourier approaches is
that the features are not optimized to maximize test power,
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but are chosen randomly. The block statistic performs worse
than both, due to the large variance of the statistic under the
null (which can be mitigated by observing more data).

In addition to feature covariances, correlation measures have
also been developed in infinite dimensional feature spaces:
in particular, Bach & Jordan (2002); Fukumizu et al. (2008)
proposed statistics on the correlation operator in a repro-
ducing kernel Hilbert space. While convergence has been
established for certain of these statistics, their computa-
tional cost is high at O(n3), and test thresholds have relied
on permutation. A number of much faster approaches to
testing based on feature correlations have been proposed,
however. For instance, Dauxois & Nkiet (1998) compute
statistics of the correlation between finite sets of basis func-
tions, chosen for instance to be step functions or low order
B-splines. The cost of this approach is O(n). This idea
was extended by Lopez-Paz et al. (2013), who computed
the canonical correlation between finite sets of basis func-
tions chosen as random Fourier features; in addition, they
performed a copula transform on the inputs, with a total
cost of O(n log n). Finally, space partitioning approaches
have also been proposed, based on statistics such as the
KL divergence, however these apply only to univariate vari-
ables (Heller et al., 2016), or to multivariate variables of
low dimension (Gretton & Györfi, 2010) (that said, these
tests have other advantages of theoretical interest, notably
distribution-independent test thresholds).

The approach we take is most closely related to HSIC on a
finite set of features. Our simplest test statistic, the Finite
Set Independence Criterion (FSIC), is an average of covari-
ances of analytic functions (i.e., features) defined on each
of X and Y . A normalized version of the statistic (NFSIC)
yields a distribution-independent asymptotic test threshold.
We show that our test is consistent, despite a finite number
of analytic features being used, via a generalization of ar-
guments in Chwialkowski et al. (2015). As in recent work
on two-sample testing by Jitkrittum et al. (2016), our test
is adaptive in the sense that we choose our features on a
held-out validation set to optimize a lower bound on the
test power. The design of features for independence testing
turns out to be quite different to the case of two-sample
testing, however: the task is to find correlated feature pairs
on the respective marginal domains, rather than attempting
to find a single, high-dimensional feature representation on
the tensor product of the marginals, as we would need to
do if we were comparing distributions Pxy and Qxy . While
the use of coupled feature pairs on the marginals entails a
smaller feature space dimension, it introduces significant
complications in the proof of the lower bound, compared
with the two-sample case. We demonstrate the performance
of our tests on several challenging artificial and real-world
datasets, including detection of dependence between music
and its year of appearance, and between videos and captions.

In these experiments, we outperform competing linear and
O(n log n) time tests.

2. Independence Criteria and Statistical Tests
We introduce two test statistics: first, the Finite Set Inde-
pendence Criterion (FSIC), which builds on the principle
that dependence can be measured in terms of the covari-
ance between data features. Next, we propose a normalized
version of this statistic (NFSIC), with a simpler asymptotic
distribution when Pxy = PxPy. We show how to select
features for the latter statistic to maximize a lower bound
on the power of its corresponding statistical test.

2.1. The Finite Set Independence Criterion

We begin by recalling the Hilbert-Schmidt Independence
Criterion (HSIC) as proposed in Gretton et al. (2005), since
our unnormalized statistic is built along similar lines. Con-
sider two random variables X ∈ X ⊆ Rdx and Y ∈ Y ⊆
Rdy . Denote by Pxy the joint distribution betweenX and Y ;
Px and Py are the marginal distributions of X and Y . Let⊗
denote the tensor product, such that (a⊗ b) c = a 〈b, c〉. As-
sume that k : X × X → R and l : Y × Y → R are positive
definite kernels associated with reproducing kernel Hilbert
spaces (RKHS)Hk andHl, respectively. Let ‖ · ‖HS be the
norm on the space ofHl → Hk Hilbert-Schmidt operators.
Then, HSIC between X and Y is defined as

HSIC(X,Y ) =
∥∥µxy − µx ⊗ µy

∥∥2
HS

= E(x,y),(x′,y′) [k(x,x′)l(y,y′)]

+ ExEx′ [k(x,x′)]EyEy′ [l(y,y
′)]

− 2E(x,y) [Ex′ [k(x,x′)]Ey′ [l(y,y
′)]] , (1)

where Ex := Ex∼Px
, Ey := Ey∼Py

, Exy := E(x,y)∼Pxy
,

and x′ is an independent copy of x. The mean embedding of
Pxy belongs to the space of Hilbert-Schmidt operators from
Hl to Hk, µxy :=

∫
X×Y k(x, ·) ⊗ l(y, ·) dPxy(x,y) ∈

HS(Hl,Hk), and the marginal mean embeddings are µx :=∫
X k(x, ·) dPx(x) ∈ Hk and µy :=

∫
Y l(y, ·) dPy(y) ∈

Hl (Smola et al., 2007). Gretton et al. (2005, Theorem 4)
show that if the kernels k and l are universal (Steinwart
& Christmann, 2008) on compact domains X and Y , then
HSIC(X,Y ) = 0 if and only if X and Y are independent.
Given a joint sample Zn = {(xi,yi)}ni=1 ∼ Pxy, an em-
pirical estimator of HSIC can be computed in O(n2) time
by replacing the population expectations in (1) with their
corresponding empirical expectations based on Zn.

We now propose our new linear-time dependence mea-
sure, the Finite Set Independence Criterion (FSIC). Let
X ⊆ Rdx and Y ⊆ Rdy be open sets. Let
µxµy(x,y) := µx(x)µy(y) The idea is to see µxy(v,w) =
Exy[k(x,v)l(y,w)], µx(v) = Ex[k(x,v)] and µy(w) =
Ey[l(y,w)] as smooth functions, and consider a new dis-
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tance between µxy and µxµy instead of a Hilbert-Schmidt
distance as in HSIC (Gretton et al., 2005). The new mea-
sure is given by the average of squared differences be-
tween µxy and µxµy, evaluated at J random test locations
VJ := {(vi,wi)}Ji=1 ⊂ X × Y .

FSIC2(X,Y ) :=
1

J

J∑

i=1

[µxy(vi,wi)− µx(vi)µy(wi)]
2

=
1

J

J∑

i=1

u2(vi,wi) =
1

J
‖u‖22,

where

u(v,w) := µxy(v,w)− µx(v)µy(w)

= Exy[k(x,v)l(y,w)]− Ex[k(x,v)]Ey[l(y,w)], (2)
= covxy[k(x,v), l(y,w)],

u := (u(v1,w1), . . . , u(vJ ,wJ))>, and {(vi,wi)}Ji=1

are realizations from an absolutely continuous distribution
(wrt the Lebesgue measure).

Our first result in Proposition 2 states that FSIC(X,Y )
almost surely defines a dependence measure for the random
variables X and Y , provided that the product kernel on
the joint space X × Y is characteristic and analytic (see
Definition 1).

Definition 1 (Analytic kernels (Chwialkowski et al., 2015)).
Let X be an open set in Rd. A positive definite kernel
k : X ×X → R is said to be analytic on its domain X ×X
if for all v ∈ X , f(x) := k(x,v) is an analytic function on
X .

Assumption A. The kernels k : X × X → R and
l : Y × Y → R are bounded by Bk and Bl respectively
[supx,x′∈X k(x,x′) ≤ Bk, supy,y′∈Y l(y,y

′) ≤ Bl] , and
the product kernel g((x,y), (x′,y′)) := k(x,x′)l(y,y′) is
characteristic (Sriperumbudur et al., 2010, Definition 6),
and analytic (Definition 1) on (X × Y)× (X × Y).

Proposition 2 (FSIC is a dependence measure). Assume
that assumption A holds, and that the test locations
VJ = {(vi,wi)}Ji=1 are drawn from an absolutely con-
tinuous distribution η. Then, η-almost surely, it holds that
FSIC(X,Y ) = 1√

J
‖u‖2 = 0 if and only if X and Y are

independent.

Proof. Since g is characteristic, the mean embedding map
Πg : P 7→ E(x,y)∼P [g((x,y), ·)] is injective (Sriperum-
budur et al., 2010, Section 3), where P is a probability
distribution on X × Y . Since g is analytic, by Lemma 10
(Appendix), µxy and µxµy are analytic functions. Thus,
Lemma 11 (Appendix, setting Λ = Πg) guarantees that
FSIC(X,Y ) = 0 ⇐⇒ Pxy = PxPy ⇐⇒ X and Y are
independent almost surely.

FSIC uses µxy as a proxy for Pxy , and µxµy as a proxy for
PxPy. Proposition 2 states that, to detect the dependence
between X and Y , it is sufficient to evaluate the difference
of the population joint embedding µxy and the embedding
of the product of the marginal distributions µxµy at a fi-
nite number of locations (defined by VJ ). The intuitive ex-
planation of this property is as follows. If Pxy = PxPy,
then u(v,w) = 0 everywhere, and FSIC(X,Y ) = 0
for any VJ . If Pxy 6= PxPy, then u will not be a zero
function, since the mean embedding map is injective (re-
quires the product kernel to be characteristic). Using the
same argument as in Chwialkowski et al. (2015), since k
and l are analytic, u is also analytic, and the set of roots
Ru := {(v,w) | u(v,w) = 0} has Lebesgue measure zero.
Thus, it is sufficient to draw (v,w) from an absolutely con-
tinuous distribution to have (v,w) /∈ Ru η-almost surely,
and hence FSIC(X,Y ) > 0. We note that a characteristic
kernel which is not analytic may produce u such thatRu has
a positive Lebesgue measure. In this case, there is a positive
probability that (v,w) ∈ Ru, resulting in a potential failure
to detect the dependence.

The next proposition shows that Gaussian kernels k and l
yield a product kernel which is characteristic and analytic; in
other words, this is an example when Assumption A holds.
Proposition 3 (A product of Gaussian kernels
is characteristic and analytic). Let k(x,x′) =
exp

(
−(x− x′)>A(x− x′)

)
and l(y,y′) =

exp
(
−(y − y′)>B(y − y′)

)
be Gaussian ker-

nels on Rdx × Rdx and Rdy × Rdy respectively,
for positive definite matrices A and B. Then,
g((x,y), (x′,y′)) = k(x,x′)l(y,y′) is characteris-
tic and analytic on (Rdx × Rdy )× (Rdx × Rdy ).

Proof (sketch). The main idea is to use the fact that a Gaus-
sian kernel is analytic, and a product of Gaussian kernels is
a Gaussian kernel on the pair of variables. See the full proof
in Appendix D.

Plug-in Estimator Assume that we observe a
joint sample Zn := {(xi,yi)}ni=1

i.i.d.∼ Pxy. Un-
biased estimators of µxy(v,w) and µxµy(v,w)
are µ̂xy(v,w) := 1

n

∑n
i=1 k(xi,v)l(yi,w) and

µ̂xµy(v,w) := 1
n(n−1)

∑n
i=1

∑
j 6=i k(xi,v)l(yj ,w),

respectively. A straightforward empirical estimator of
FSIC2 is then given by

F̂SIC2(Zn) =
1

J

J∑

i=1

û(vi,wi)
2,

û(v,w) := µ̂xy(v,w)− µ̂xµy(v,w) (3)

=
2

n(n− 1)

∑

i<j

h(v,w)((xi,yi), (xj ,yj)), (4)

where h(v,w)((x,y), (x′,y′)) := 1
2 (k(x,v) −

k(x′,v))(l(y,w) − l(y′,w)). For conciseness, we
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define û := (û1, . . . , ûJ)> ∈ RJ where ûi := û(vi,wi)

so that F̂SIC2(Zn) = 1
J û>û.

F̂SIC2 can be efficiently computed inO((dx+dy)Jn) time
which is linear in n [see (3) which does not have nested
double sums], assuming that the runtime complexity of
evaluating k(x,v) is O(dx) and that of l(y,w) is O(dy).

Since FSIC satisfies FSIC(X,Y ) = 0 ⇐⇒ X ⊥ Y , in
principle its empirical estimator can be used as a test statistic
for an independence test proposing a null hypothesis H0 :
“X and Y are independent” against an alternative H1 : “X
and Y are dependent.” The null distribution (i.e., distribu-
tion of the test statistic assuming that H0 is true) is challeng-
ing to obtain, however, and depends on the unknown Pxy.
This prompts us to consider a normalized version of FSIC
whose asymptotic null distribution takes a more convenient
form. We first derive the asymptotic distribution of û in
Proposition 4, which we use to derive the normalized test
statistic in Theorem 5. As a shorthand, we write z := (x,y),
t := (v,w), covz is covariance,Vz stands for variance.

Proposition 4 (Asymptotic distribution of û). Define
u := (u(t1), . . . , u(tJ))>, k̃(x,v) := k(x,v) −
Ex′k(x′,v), and l̃(y,w) := l(y,w) − Ey′ l(y

′,w).
Let Σ = [Σij ] ∈ RJ×J be the positive semi-definite
matrix with entries Σij = covz(û(ti), û(tj)) =

Exy[k̃(x,vi)l̃(y,wi)k̃(x,vj)l̃(y,wj)]−u(ti)u(tj). Then,
under both H0 and H1, for any fixed test locations
{t1, . . . , tJ} for which Σ is full rank, and 0 <
Vz[htj (z)] < ∞ for j = 1, . . . , J , it holds that

√
n(û −

u)
d→ N (0,Σ).

Proof. For a fixed {t1, . . . , tJ}, û is a one-sample second-
order multivariate U-statistic with a U-statistic kernel ht.
Thus, by Lehmann (1999, Theorem 6.1.6) and Kowal-
ski & Tu (2008, Section 5.1, Theorem 1), it follows di-
rectly that

√
n(û − u)

d→ N (0,Σ) where we note that
Exy[k̃(x,v)l̃(y,w)] = u(v,w).

Recall from Proposition 2 that u = 0 holds almost surely un-
der H0. The asymptotic normality described in Proposition
4 implies that nF̂SIC2 = n

J û>û converges in distribution
to a sum of J dependent weighted χ2 random variables.
The dependence comes from the fact that the coordinates
û1 . . . , ûJ of û all depend on the sample Zn. This null dis-
tribution is not analytically tractable, and requires a large
number of simulations to compute the rejection threshold
Tα for a given significance value α.

2.2. Normalized FSIC and Adaptive Test

For the purpose of an independence test, we will consider
a normalized variant of F̂SIC2, which we call N̂FSIC2,
whose tractable asymptotic null distribution is χ2(J), the

chi-squared distribution with J degrees of freedom. We
then show that the independence test defined by N̂FSIC2 is
consistent. These results are given in Theorem 5.

Theorem 5 (Independence test based on N̂FSIC2 is consis-
tent). Let Σ̂ be a consistent estimate of Σ based on the joint
sample Zn, where Σ is defined in Proposition 4. Assume
that VJ = {(vi,wi)}Ji=1 ∼ η where η is absolutely contin-
uous wrt the Lebesgue measure. The N̂FSIC2 statistic is

defined as λ̂n := nû>
(
Σ̂ + γnI

)−1
û where γn ≥ 0 is a

regularization parameter. Assume that

1. Assumption A holds.

2. Σ is invertible η-almost surely.

3. limn→∞ γn = 0.

Then, for any k, l and VJ satisfying the assumptions,

1. Under H0, λ̂n
d→ χ2(J) as n→∞.

2. Under H1, for any r ∈ R, limn→∞ P
(
λ̂n ≥ r

)
= 1

η-almost surely. That is, the independence test based on
N̂FSIC2 is consistent.

Proof (sketch) . Under H0, nû>(Σ̂ + γnI)−1û asymptot-
ically follows χ2(J) because

√
nû is asymptotically nor-

mally distributed (see Proposition 4). Claim 2 builds on
the result in Proposition 2 stating that u 6= 0 under H1; it
follows using the convergence of û to u. The full proof can
be found in Appendix E.

Theorem 5 states that if H1 holds, the statistic can be arbi-
trarily large as n increases, allowing H0 to be rejected for
any fixed threshold. Asymptotically the test threshold Tα is
given by the (1− α)-quantile of χ2(J) and is independent
of n. The assumption on the consistency of Σ̂ is required
to obtain the asymptotic chi-squared distribution. The regu-
larization parameter γn is to ensure that (Σ̂ + γnI)−1 can
be stably computed. In practice, γn requires no tuning, and
can be set to be a very small constant. We emphasize that J
need not increase with n for test consistency.

The next proposition states that the computational com-
plexity of the N̂FSIC2 estimator is linear in both the input
dimension and sample size, and that it can be expressed
in terms of the K =[Kij ] = [k(vi,xj)] ∈ RJ×n,L =
[Lij ] = [l(wi,yj)] ∈ RJ×n matrices. In contrast to typical
kernel methods, a large Gram matrix of size n × n is not
needed to compute N̂FSIC2.

Proposition 6 (An empirical estimator of N̂FSIC2). Let
1n := (1, . . . , 1)> ∈ Rn. Denote by ◦ the element-wise
matrix product. Then,
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1. û = (K◦L)1n

n−1 − (K1n)◦(L1n)
n(n−1) .

2. A consistent estimator for Σ is Σ̂ = ΓΓ>

n where

Γ := (K− n−1K1n1>n ) ◦ (L− n−1L1n1>n )− ûb1>n ,

ûb = n−1 (K ◦ L) 1n − n−2 (K1n) ◦ (L1n) .

Assume that the complexity of the kernel evaluation is lin-
ear in the input dimension. Then the test statistic λ̂n =

nû>
(
Σ̂ + γnI

)−1
û can be computed in O(J3 + J2n +

(dx + dy)Jn) time.

Proof (sketch). Claim 1 for û is straightforward. The ex-
pression for Σ̂ in claim 2 follows directly from the asymp-
totic covariance expression in Proposition 4. The consis-
tency of Σ̂ can be obtained by noting that the finite sample
bound for P(‖Σ̂−Σ‖F > t) decreases as n increases. This
is implicitly shown in Appendix F.2.2 and its following
sections.

Although the dependency of the estimator on J is cubic, we
empirically observe that only a small value of J is required
(see Section 3). The number of test locations J relates to
the number of regions in X × Y of pxy and pxpy that differ
(see Figure 1).

Theorem 5 asserts the consistency of the test for any test
locations VJ drawn from an absolutely continuous distribu-
tion. In practice, VJ can be further optimized to increase
the test power for a fixed sample size. Our final theoretical
result gives a lower bound on the test power of N̂FSIC2 i.e.,
the probability of correctly rejecting H0. We will use this
lower bound as the objective function to determine VJ and
the kernel parameters. Let ‖ · ‖F be the Frobenius norm.

Theorem 7 (A lower bound on the test power). Let
NFSIC2(X,Y ) := λn := nu>Σ−1u. Let K be a kernel
class for k, L be a kernel class for l, and V be a collection
with each element being a set of J locations. Assume that

1. There exist finite Bk and Bl such that
supk∈K supx,x′∈X |k(x,x′)| ≤ Bk and
supl∈L supy,y′∈Y |l(y,y′)| ≤ Bl.

2. c̃ := supk∈K supl∈L supVJ∈V ‖Σ
−1‖F <∞.

Then, for any k ∈ K, l ∈ L, VJ ∈ V , and λn ≥ r, the test
power satisfies P

(
λ̂n ≥ r

)
≥ L(λn) where

L(λn) = 1− 62e−ξ1γ
2
n(λn−r)2/n − 2e−b0.5nc(λn−r)2/[ξ2n2]

− 2e−[(λn−r)γn(n−1)/3−ξ3n−c3γ2
nn(n−1)]

2
/[ξ4n2(n−1)],

b·c is the floor function, ξ1 := 1
32c21J

2B∗ , B∗ is a constant

depending on onlyBk andBl, ξ2 := 72c22JB
2,B := BkBl,

ξ3 := 8c1B
2J , c3 := 4B2Jc̃2, ξ4 := 28B4J2c21, c1 :=

4B2J
√
Jc̃, and c2 := 4B

√
Jc̃. Moreover, for sufficiently

large fixed n, L(λn) is increasing in λn.

We provide the proof in Appendix F. To put
Theorem 7 into perspective, assume that K ={

(x,v) 7→ exp
(
−‖x−v‖2

2σ2
x

)
| σ2

x ∈ [σ2
x,l, σ

2
x,u]
}

=: Kg
for some 0 < σ2

x,l < σ2
x,u < ∞ and L ={

(y,w) 7→ exp
(
−‖y−w‖2

2σ2
y

)
| σ2

y ∈ [σ2
y,l, σ

2
y,u]
}

=: Lg
for some 0 < σ2

y,l < σ2
y,u < ∞ are Gaussian kernel

classes. Then, in Theorem 7, B = Bk = Bl = 1,
and B∗ = 2. The assumption c̃ < ∞ is a techni-
cal condition to guarantee that the test power lower
bound is finite for all θ defined by the feasible sets
K,L, and V . Let Vε,r :=

{
VJ | ‖vi‖2, ‖wi‖2 ≤

r and ‖vi−vj‖22 + ‖wi−wj‖22 ≥ ε, for all i 6= j
}

. If we
set K = Kg,L = Lg, and V = Vε,r for some ε, r > 0, then
c̃ <∞ as Kg,Lg, and Vε,r are compact. In practice, these
conditions do not necessarily create restrictions as they
almost always hold implicitly. We show in Appendix C that
the objective function used to choose VJ will discourage
any two locations to be in the same neighborhood.

Parameter Tuning Let θ be the collection of all tuning
parameters of the test. If k ∈ Kg and l ∈ Lg (i.e., Gaus-
sian kernels), then θ = {σ2

x, σ
2
y, VJ}. The test power

lower bound L(λn) in Theorem 7 is a function of λn =
nu>Σ−1u which is the population counterpart of the test
statistic λ̂n. As in FSIC, it can be shown that λn = 0 if
and only if X are Y are independent (from Proposition 2).
According to Theorem 7, for a sufficiently large n, the test
power lower bound is increasing in λn. One can therefore
think of λn (a function of θ) as representing how easily the
test rejects H0 given a problem Pxy . The higher the λn, the
greater the lower bound on the test power, and thus the more
likely it is that the test will reject H0 when it is false.

In light of this reasoning, we propose to set θ by maxi-
mizing the lower bound on the test power i.e., set θ to
θ∗ = arg maxθ L(λn). Assume that n is sufficiently large
so that λn 7→ L(λn) is an increasing function. Then,
arg maxθ L(λn) = arg maxθ λn. That this procedure is
also valid under H0 can be seen as follows. Under H0,
θ∗ = arg maxθ 0 will be arbitrary. Since Theorem 7 guaran-
tees that λ̂n

d→ χ2(J) as n→∞ for any θ, the asymptotic
null distribution does not change by using θ∗. In practice,
λn is a population quantity which is unknown. We propose
dividing the sample Zn into two disjoint sets: training and
test sets. The training set is used to compute λ̂n (an estimate
of λn) to optimize for θ∗, and the test set is used for the ac-
tual independence test with the optimized θ∗. The splitting
is to guarantee the independence of θ∗ and the test sample
to avoid overfitting.
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(a) µ̂xy(v,w) (b) µ̂xµy(v,w)

(c) Σ̂(v,w) (d) Statistic λ̂n(v,w)

Figure 1: Illustration of N̂FSIC2.

To better understand the behaviour of N̂FSIC2, we visual-
ize µ̂xy(v,w), µ̂xµy(v,w) and Σ̂(v,w) as a function of
one test location (v,w) on a simple toy problem. In this
problem, Y = −X + Z where Z ∼ N (0, 0.32) is an inde-
pendent noise variable. As we consider only one location
(J = 1), Σ̂(v,w) is a scalar. The statistic can be written

as λ̂n = n
(µ̂xy(v,w)−µ̂xµy(v,w))

2

Σ̂(v,w)
. These components are

shown in Figure 1, where we use Gaussian kernels for both
X and Y , and the horizontal and vertical axes correspond
to v ∈ R and w ∈ R, respectively.

Intuitively, û(v,w) = µ̂xy(v,w) − µ̂xµy(v,w) captures
the difference of the joint distribution and the product of
the marginals as a function of (v,w). Squaring û(v,w)
and dividing it by the variance shown in Figure 1c gives the
statistic (also the parameter tuning objective) shown in Fig-
ure 1d. The latter figure illustrates that the parameter tuning
objective function can be non-convex: non-convexity arises
since there are multiple ways to detect the difference be-
tween the joint distribution and the product of the marginals.
In this case, the lower left and upper right regions equally
indicate the largest difference. A convex objective would
not be able to capture this phenomenon.

3. Experiments
In this section, we empirically study the performance of
the proposed method on both toy (Section 3.1) and real
problems (Section 3.2). We are interested in challeng-
ing problems requiring a large number of samples, where
a quadratic-time test might be computationally infeasi-
ble. Our goal is not to outperform a quadratic-time test
with a linear-time test uniformly over all testing problems.
We will find, however, that our test does outperform the
quadratic-time test in some cases. Code is available at
https://github.com/wittawatj/fsic-test.

We compare the proposed NFSIC with optimization (NFSIC-
opt) to five multivariate nonparametric tests. The N̂FSIC2

test without optimization (NFSIC-med) acts as a baseline,
allowing the effect of parameter optimization to be clearly

seen. For pedagogical reason, we consider the original HSIC
test of Gretton et al. (2005) denoted by QHSIC, which is a
quadratic-time test. Nyström HSIC (NyHSIC) uses a Nys-
tröm approximation to the kernel matrices ofX and Y when
computing the HSIC statistic. FHSIC is another variant of
HSIC in which a random Fourier feature approximation
(Rahimi & Recht, 2008) to the kernel is used. NyHSIC and
FHSIC are studied in Zhang et al. (2017) and can be com-
puted in O(n), with quadratic dependency on the number
of inducing points in NyHSIC, and quadratic dependency
on the number of random features in FHSIC. Finally, the
Randomized Dependence Coefficient (RDC) proposed in
Lopez-Paz et al. (2013) is also considered. The RDC can be
seen as the primal form (with random Fourier features) of
the kernel canonical correlation analysis of Bach & Jordan
(2002) on copula-transformed data. We consider RDC as a
linear-time test even though preprocessing by an empirical
copula transform costs O((dx + dy)n log n).

We use Gaussian kernel classes Kg and Lg for both
X and Y in all the methods. Except NFSIC-opt, all
other tests use full sample to conduct the independence
test, where the Gaussian widths σx and σy are set ac-
cording to the widely used median heuristic i.e., σx =
median ({‖xi − xj‖2 | 1 ≤ i < j ≤ n}), and σy is set in
the same way using {yi}ni=1. The J locations for NFSIC-
med are randomly drawn from the standard multivariate
normal distribution in each trial. For a sample of size n,
NFSIC-opt uses half the sample for parameter tuning, and
the other disjoint half for the test. We permute the sample
300 times in RDC1 and HSIC to simulate from the null
distribution and compute the test threshold. The null distri-
butions for FHSIC and NyHSIC are given by a finite sum of
weighted χ2(1) random variables given in Eq. 8 of Zhang
et al. (2017). Unless stated otherwise, we set the test thresh-
old of the two NFSIC tests to be the (1 − α)-quantile of
χ2(J). To provide a fair comparison, we set J = 10, use 10
inducing points in NyHSIC, and 10 random Fourier features
in FHSIC and RDC.

Optimization of NFSIC-opt The parameters of NFSIC-opt
are σx, σy, and J locations of size (dx + dy)J . We treat all
the parameters as a long vector in R2+(dx+dy)J and use gra-
dient ascent to optimize λ̂n/2. We observe that initializing
VJ by randomly picking J points from the training sample
yields good performance. The regularization parameter γn
in NFSIC is fixed to a small value, and is not optimized. It is
worth emphasizing that the complexity of the optimization
procedure is still linear-time.2

1We use a permutation test for RDC, following the au-
thors’ implementation (https://github.com/lopezpaz/
randomized_dependence_coefficient, referred com-
mit: b0ac6c0).

2Our claim on linear runtime (with respect to n) is for the
gradient ascent procedure to find a local optimum for θ. We do not
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Figure 2: (a): Runtime. (b): Probability of rejecting H0 as problem parameters vary. Fix n = 4000.

Since FSIC, NyHFSIC and RDC rely on a finite-
dimensional kernel approximation, these tests are consistent
only if both the number of features increases with n. By
constrast, the proposed NFSIC requires only n to go to in-
finity to achieve consistency i.e., J can be fixed. We refer
the reader to Appendix C for a brief investigation of the test
power vs. increasing J . The test power does not necessarily
monotonically increase with J .

3.1. Toy Problems

We consider three toy problems.

1. Same Gaussian (SG). The two variables are indepen-
dently drawn from the standard multivariate normal distri-
bution i.e., X ∼ N (0, Idx) and Y ∼ N (0, Idy ) where Id
is the d× d identity matrix. This problem represents a case
in which H0 holds.

2. Sinusoid (Sin). Let pxy be the probability density of Pxy .
In the Sinusoid problem, the dependency ofX and Y is char-
acterized by (X,Y ) ∼ pxy(x, y) ∝ 1 + sin(ωx) sin(ωy),
where the domains of X ,Y = (−π, π) and ω is the fre-
quency of the sinusoid. As the frequency ω increases, the
drawn sample becomes more similar to a sample drawn
from Uniform((−π, π)2). That is, the higher ω, the harder
to detect the dependency between X and Y . This problem
was studied in Sejdinovic et al. (2013). Plots of the density
for a few values of ω are shown in Figures 6 and 7 in the
appendix. The main characteristic of interest in this problem
is the local change in the density function.

3. Gaussian Sign (GSign). In this problem, Y =

|Z|∏dx
i=1 sgn(Xi), where X ∼ N (0, Idx), sgn(·) is the

sign function, and Z ∼ N (0, 1) serves as a source of noise.
The full interaction of X = (X1, . . . , Xdx) is what makes
the problem challenging. That is, Y is dependent on X ,
yet it is independent of any proper subset of {X1, . . . , Xd}.
Thus, simultaneous consideration of all the coordinates of
X is required to successfully detect the dependency.

We fix n = 4000 and vary the problem parameters. Each
problem is repeated for 300 trials, and the sample is redrawn
each time. The significance level α is set to 0.05. The re-

claim a linear runtime to find a global optimum.

sults are shown in Figure 2. It can be seen that in the SG
problem (Figure 2b) where H0 holds, all the tests achieve
roughly correct type-I errors at α = 0.05. In particular,
we point out that NFSIC-opt’s rejection rate is well con-
trolled as the sample used for testing and the sample used
for parameter tuning are independent. The rejection rate
would have been much higher had we done the optimization
and testing on the same sample (i.e., overfitting). In the
Sin problem, NFSIC-opt achieves high test power for all
considered ω = 1, . . . , 6, highlighting its strength in detect-
ing local changes in the joint density. The performance of
NFSIC-med is significantly lower than that of NFSIC-opt.
This phenomenon clearly emphasizes the importance of the
optimization to place the locations at the relevant regions in
X×Y . RDC has a remarkably high performance in both Sin
and GSign (Figure 2c, 2d) despite no parameter tuning. The
ability to simultaneously consider interacting features of
NFSIC-opt is indicated by its superior test power in GSign,
especially at the challenging settings of dx = 5, 6.

NFSIC vs. QHSIC. We observe that NFSIC-opt outper-
forms the quadratic-time QHSIC in these two problems.
QHSIC is defined as the RKHS norm of the witness func-
tion u (see (2)). Intuitively, one can think of the RKHS
norm as taking into account all the locations (v,w). By
contrast, the proposed NFSIC evaluates the witness function
at J locations. If the differences in pxy and pxpy are local
(e.g., Sin problem), or there are interacting features (e.g.,
GSign problem), then only small regions in the space of
(X,Y ) are relevant in detecting the difference of pxy and
pxpy. In these cases, pinpointing exact test locations by
the optimization of NFSIC performs well. On the other
hand, taking into account all possible test locations as done
implicitly in QHSIC also integrates over regions where the
difference between pxy and pxpy is small, resulting in a
weaker indication of dependence. Whether QHSIC is better
than NFSIC depends heavily on the problem, and there is
no one best answer. If the difference between pxy and pxpy
is large only in localized regions, then the proposed linear
time statistic has an advantage. If the difference is spatially
diffuse, then QHSIC has an advantage. No existing work
has proposed a procedure to optimally tune kernel param-
eters for QHSIC; by contrast, NFSIC has a clearly defined
objective for parameter tuning.
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Figure 3: (a) Runtime. (b): Probability of rejecting H0 as n increases in the toy problems.

To investigate the sample efficiency of all the tests, we fix
dx = dy = 250 in SG, ω = 4 in Sin, dx = 4 in GSign, and
increase n. Figure 3 shows the results. The quadratic depen-
dency on n in QHSIC makes it infeasible both in terms of
memory and runtime to consider n larger than 6000 (Fig-
ure 3a). By constrast, although not the most time-efficient,
NFSIC-opt has the highest sample-efficiency for GSign, and
for Sin in the low-sample regime, significantly outperform-
ing QHSIC. Despite the small additional overhead from the
optimization, we are yet able to conduct an accurate test
with n = 105, dx = dy = 250 in less than 100 seconds.
We observe in Figure 3b that the two NFSIC variants have
correct type-I errors across all sample sizes. We recall from
Theorem 5 that the NFSIC test with random test locations
will asymptotically reject H0 if it is false. A demonstration
of this property is given in Figure 3c, where the test power
of NFSIC-med eventually reaches 1 with n higher than 105.

3.2. Real Problems

We now examine the performance of our proposed test on
real problems.

Million Song Data (MSD) We consider a subset of the
Million Song Data3 (Bertin-Mahieux et al., 2011), in which
each song (X) out of 515,345 is represented by 90 features,
of which 12 features are timbre average (over all segments)
of the song, and 78 features are timbre covariance. Most of
the songs are western commercial tracks from 1922 to 2011.
The goal is to detect the dependency between each song and
its year of release (Y ). We set α = 0.01, and repeat for
300 trials where the full sample is randomly subsampled
to n points in each trial. Other settings are the same as
in the toy problems. To make sure that the type-I error
is correct, we use the permutation approach in the NFSIC
tests to compute the threshold. Figure 4b shows the test
powers as n increases from 500 to 2000. To simulate the
case whereH0 holds in the problem, we permute the sample
to break the dependency of X and Y . The results are shown
in Figure 5 in the appendix.

Evidently, NFSIC-opt has the highest test power among all

3Million Song Data subset: https://archive.ics.
uci.edu/ml/datasets/YearPredictionMSD.
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Figure 4: Probability of rejecting H0 as n increases in the
two real problems. α = 0.01.

the linear-time tests for all the sample sizes. Its test power
is second to only QHSIC. We recall that NFSIC-opt uses
half of the sample for parameter tuning. Thus, at n = 500,
the actual sample for testing is 250, which is relatively
small. The fact that there is a vast power gain from 0.4
(NFSIC-med) to 0.8 (NFSIC-opt) at n = 500 suggests that
the optimization procedure can perform well even at a lower
sample sizes.

Videos and Captions Our last problem is based on the
VideoStory46K4 dataset (Habibian et al., 2014). The
dataset contains 45,826 Youtube videos (X) of an aver-
age length of roughly one minute, and their corresponding
text captions (Y ) uploaded by the users. Each video is
represented as a dx = 2000 dimensional Fisher vector en-
coding of motion boundary histograms (MBH) descriptors
of Wang & Schmid (2013). Each caption is represented
as a bag of words with each feature being the frequency
of one word. After filtering only words which occur in at
least six video captions, we obtain dy = 1878 words. We
examine the test powers as n increases from 2000 to 8000.
The results are given in Figure 4. The problem is suffi-
ciently challenging that all linear-time tests achieve a low
power at n = 2000. QHSIC performs exceptionally well
on this problem, achieving a maximum power throughout.
NFSIC-opt has the highest sample efficiency among the
linear-time tests, showing that the optimization procedure is
also practical in a high dimensional setting.

4VideoStory46K dataset: https://ivi.fnwi.uva.nl/
isis/mediamill/datasets/videostory.php.
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Supplementary Material

A. Type-I Errors
In this section, we show that all the tests have correct type-I errors (i.e., the probability of reject H0 when it is true) in real
problems. We permute the joint sample so that the dependency is broken to simulate cases in which H0 holds. The results
are shown in Figure 5.
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(b) Videos & Captions problem (permuted
sample).

Figure 5: Probability of rejecting H0 as n increases. α = 0.01.

B. Redundant Test Locations
Here, we provide a simple illustration to show that two locations t1 = (v1,w1) and t2 = (v2,w2) which are too close
to each other will reduce the optimization objective. We consider the Sinusoid problem described in Section 3.1 with
ω = 1, and use J = 2 test locations. In Figure 6, t1 is fixed at the red star, while t2 is varied along the horizontal line. The
objective value λ̂n as a function of t2 is shown in the bottom figure. It can be seen that λ̂n decreases sharply when t2 is
in the neighborhood of t1. This property implies that two locations which are too close will not maximize the objective
function (i.e., the second feature contains no additional information when it matches the first). For J > 2, the objective
sharply decreases if any two locations are in the same neighborhood.
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Figure 6: Plot of optimization objective values as location t2 moves along the green line. The objective sharply drops when
the two locations are in the same neighborhood.

C. Test Power vs. J
It might seem intuitive that as the number of locations J increases, the test power should also increase. Here, we empirically
show that this statement is not always true. Consider the Sinusoid toy example described in Section 3.1 with ω = 2 (also see
the left figure of Figure 7). By construction, X and Y are dependent in this problem. We run NFSIC test with a sample size
of n = 800, varying J from 1 to 600. For each value of J , the test is repeated for 500 times. In each trial, the sample is
redrawn and the J test locations are drawn from Uniform((−π, π)2). There is no optimization of the test locations. We use
Gaussian kernels for both X and Y , and use the median heuristic to set the Gaussian widths to 1.8. Figure 7 shows the test
power as J increases.
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Figure 7: The Sinusoid problem and the plot of test power vs. the number of test locations.

We observe that the test power does not monotonically increase as J increases. When J = 1, the difference of pxy and pxpy
cannot be adequately captured, resulting in a low power. The power increases rapidly to roughly 0.6 at J = 10, and stays at
1 until about J = 100. Then, the power starts to drop sharply when J is higher than 400 in this problem.

Unlike random Fourier features, the number of test locations in NFSIC is not the number of Monte Carlo particles used to
approximate an expectation. There is a tradeoff: if the test locations are in key regions (i.e., regions in which there is a big
difference between pxy and pxpy), then they increase power; yet the statistic gains in variance (thus reducing test power) as
J increases. As can be seen in Figure 7, there are eight key regions (in blue) that can reveal the difference of pxy and pxpy .
Using an unnecessarily high J not only makes the covariance matrix Σ̂ harder to estimate accurately, it also increases the
computation as the complexity on J is O(J3).

We note that NFSIC is not intended to be used with a large J . In practice, it should be set to be large enough so as to capture
the key regions as stated. As a practical guide, with optimization of the test locations, a good starting point is J = 5 or 10.

D. Proof of Proposition 3
Recall Proposition 3,

Proposition (A product of Gaussian kernels is characteristic and analytic). Let k(x,x′) = exp
(
−(x− x′)>A(x− x′)

)
and

l(y,y′) = exp
(
−(y − y′)>B(y − y′)

)
be Gaussian kernels on Rdx×Rdx and Rdy×Rdy respectively, for positive definite

matrices A and B. Then, g((x,y), (x′,y′)) = k(x,x′)l(y,y′) is characteristic and analytic on (Rdx×Rdy )×(Rdx×Rdy ).

Proof. Let z := (x>,y>)> and z′ := (x′>,y′>)> be vectors in Rdx+dy . We prove by reducing the product kernel to one

Gaussian kernel with g(z, z′) = exp
(
−(z− z′)>C(z− z′)

)
where C :=

(
A 0
0 B

)
. Write g(z, z′) = Ψ(z− z′) where

Ψ(t) := exp
(
−t>Ct

)
. Since C is positive definite, we see that the finite measure ζ corresponding to Ψ as defined in

Lemma 12 has support everywhere in Rdx+dy . Thus, Sriperumbudur et al. (2010, Theorem 9) implies that g is characteristic.

To see that g is analytic, we observe that for each z′ ∈ Rdx+dy , z 7→ −(z− z′)>C(z− z′) is a multivariate polynomial
in z, which is known to be analytic. Using the fact that t 7→ exp(t) is analytic on R, and that a composition of analytic
functions is analytic, we see that z 7→ exp

(
−(z− z′)>C(z− z′)

)
is analytic on Rdx+dy for each z′.

E. Proof of Theorem 5
Recall Theorem 5,

Theorem 5 (Independence test based on N̂FSIC2 is consistent). Let Σ̂ be a consistent estimate of Σ based on the joint
sample Zn, where Σ is defined in Proposition 4. Assume that VJ = {(vi,wi)}Ji=1 ∼ η where η is absolutely continuous wrt

the Lebesgue measure. The N̂FSIC2 statistic is defined as λ̂n := nû>
(
Σ̂ + γnI

)−1
û where γn ≥ 0 is a regularization

parameter. Assume that

1. Assumption A holds.

2. Σ is invertible η-almost surely.
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3. limn→∞ γn = 0.

Then, for any k, l and VJ satisfying the assumptions,

1. Under H0, λ̂n
d→ χ2(J) as n→∞.

2. Under H1, for any r ∈ R, limn→∞ P
(
λ̂n ≥ r

)
= 1 η-almost surely. That is, the independence test based on N̂FSIC2

is consistent.

Proof. Assume thatH0 holds. The consistency of Σ̂ and the continuous mapping theorem imply that
(
Σ̂ + γnI

)−1 p→ Σ−1

which is a constant. Let a be a random vector in RJ followingN (0,Σ). By van der Vaart (2000, Theorem 2.7 (v)), it follows

that
[√

nû,
(
Σ̂ + γnI

)−1] d→
[
a,Σ−1

]
where u = 0 almost surely by Proposition 2, and

√
nû

d→ N (0,Σ) by Proposition

4. Since f(x,S) := x>Sx is continuous, f
(√

nû,
(
Σ̂ + γnI

)−1) d→ f(a,Σ−1). Equivalently, nû>
(
Σ̂ + γnI

)−1
û

d→

a>Σ−1a ∼ χ2(J) by Anderson (2003, Theorem 3.3.3). This proves the first claim.

The proof of the second claim has a very similar structure to the proof of Proposition 2 of Chwialkowski et al. (2015).
Assume that H1 holds. Then, u 6= 0 almost surely by Proposition 2. Since k and l are bounded, it follows that
|ht(z, z

′)| ≤ 2BkBl for any z, z′ (see (8)), and we have that û
a.s.→ u by Serfling (2009, Section 5.4, Theorem A). Thus,

û>
(
Σ̂ + γnI

)−1
û− r

n

d→ u>Σ−1u by the continuous mapping theorem, and the consistency of Σ̂. Consequently,

lim
n→∞

P
(
λ̂n ≥ r

)

= 1− lim
n→∞

P
(

û>
(
Σ̂ + γnI

)−1
û− r

n
< 0

)

(a)
= 1− P

(
u>Σ−1u < 0

) (b)
= 1,

where at (a) we use the Portmanteau theorem (van der Vaart, 2000, Lemma 2.2 (i)) guaranteeing that xn
d→ x if and only if

P(xn < t)→ P(x < t) for all continuity points of t 7→ P(x < t). Step (b) is justified by noting that the covariance matrix
Σ is positive definite so that u>Σ−1u > 0, and t 7→ P(u>Σ−1u < t) (a step function) is continuous at 0.

F. Proof of Theorem 7
Recall Theorem 7,

Theorem 7 (A lower bound on the test power). Let NFSIC2(X,Y ) := λn := nu>Σ−1u. Let K be a kernel class for k, L
be a kernel class for l, and V be a collection with each element being a set of J locations. Assume that

1. There exist finite Bk and Bl such that supk∈K supx,x′∈X |k(x,x′)| ≤ Bk and supl∈L supy,y′∈Y |l(y,y′)| ≤ Bl.

2. c̃ := supk∈K supl∈L supVJ∈V ‖Σ
−1‖F <∞.

Then, for any k ∈ K, l ∈ L, VJ ∈ V , and λn ≥ r, the test power satisfies P
(
λ̂n ≥ r

)
≥ L(λn) where

L(λn) = 1− 62e−ξ1γ
2
n(λn−r)2/n − 2e−b0.5nc(λn−r)2/[ξ2n2]

− 2e−[(λn−r)γn(n−1)/3−ξ3n−c3γ2
nn(n−1)]

2
/[ξ4n2(n−1)],

b·c is the floor function, ξ1 := 1
32c21J

2B∗ , B∗ is a constant depending on only Bk and Bl, ξ2 := 72c22JB
2, B := BkBl,

ξ3 := 8c1B
2J , c3 := 4B2Jc̃2, ξ4 := 28B4J2c21, c1 := 4B2J

√
Jc̃, and c2 := 4B

√
Jc̃. Moreover, for sufficiently large

fixed n, L(λn) is increasing in λn.



An Adaptive Test of Independence with Analytic Kernel Embeddings

Overview of the proof We first derive a probabilistic bound for |λ̂n − λn|/n. The bound is in turn upper bounded by
an expression involving ‖û− u‖2 and ‖Σ̂−Σ‖F . The difference ‖û− u‖2 can be bounded by applying the bound for
U-statistics given in Serfling (2009, Theorem A, p. 201). For ‖Σ̂−Σ‖F , we decompose it into a sum of smaller components,
and bound each term with a product variant of the Hoeffding’s inequality (Lemma 9). L(λn) is obtained by combining all
the bounds with the union bound.

F.1. Notations

Let 〈A,B〉F := tr(A>B) denote the Frobenius inner product, and ‖A‖F :=
√

tr(A>A) be the Frobenius norm. Write
z := (x,y) to denote a pair of points from X ×Y . We write t := (v,w) to denote a pair of test locations from X ×Y . For
brevity, an expectation over (x,y) (i.e., E(x,y)∼Pxy

) will be written as Ez or Exy. Define k̃(x,v) := k(x,v)−Ex′k(x′,v),
and l̃(y,w) := l(y,w)− Ey′ l(y

′,w). Let B2(r) := {x | ‖x‖2 ≤ r} be a closed ball with radius r centered at the origin.
Similarly, define BF (r) := {A | ‖A‖F ≤ r} to be a closed ball with radius r of J × J matrices under the Frobenius norm.
Denote the max operation by (x1, . . . , xm)+ = max(x1, . . . , xm).

For a product of marginal mean embeddings µx(v)µy(w), we write µ̂xµy(v,w) := 1
n(n−1)

∑n
i=1

∑
j 6=i k(xi,v)l(yj ,w)

to denote the unbiased plug-in estimator, and write µ̂x(v)µ̂y(w) := 1
n

∑n
i=1 k(xi,v) 1

n

∑n
j=1 l(yj ,w) which is a biased

estimator. Define ûb(v,w) := µ̂xy(v,w) − µ̂x(v)µ̂y(w) so that ûb :=
(
ûb(t1), . . . , ûb(tJ)

)>
where the superscript b

stands for “biased”. To avoid confusing with a positive definite kernel, we will refer to a U-statistic kernel as a core.

F.2. Proof

We will first derive a bound for P(|λ̂n − λn| ≥ t), which will then be reparametrized to get a bound for the target quantity
P(λ̂n ≥ r). We closely follow the proof in Jitkrittum et al. (2016, Section C.1) up to (12), then we diverge. We start by
considering |λ̂n − λn|/n.

|λ̂n − λn|/n =
∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u

∣∣∣

=

∣∣∣∣û>
(
Σ̂ + γnI

)−1
û− u> (Σ + γnI)

−1
u + u> (Σ + γnI)

−1
u− u>Σ−1u

∣∣∣∣

≤
∣∣∣∣û>

(
Σ̂ + γnI

)−1
û− u> (Σ + γnI)

−1
u

∣∣∣∣+
∣∣∣u> (Σ + γnI)

−1
u− u>Σ−1u

∣∣∣

:= (F)1 + (F)2 .

We next bound (F1) and (F2) separately.

(F)1 =

∣∣∣∣û>
(
Σ̂ + γnI

)−1
û− u> (Σ + γnI)

−1
u

∣∣∣∣

=

∣∣∣∣û>
(
Σ̂ + γnI

)−1
û− û> (Σ + γnI)

−1
û + û> (Σ + γnI)

−1
û− u> (Σ + γnI)

−1
u

∣∣∣∣

≤
∣∣∣∣û>

(
Σ̂ + γnI

)−1
û− û> (Σ + γnI)

−1
û

∣∣∣∣+
∣∣∣û> (Σ + γnI)

−1
û− u> (Σ + γnI)

−1
u
∣∣∣

=

∣∣∣∣
〈

ûû>,
(
Σ̂ + γnI

)−1
− (Σ + γnI)

−1
〉

F

∣∣∣∣+
∣∣∣
〈
ûû> − uu>, (Σ + γnI)

−1
〉
F

∣∣∣

≤ ‖ûû>‖F ‖(Σ̂ + γnI)−1 − (Σ + γnI)−1‖F + ‖ûû> − uu>‖F ‖(Σ + γnI)−1‖F
= ‖ûû>‖F ‖(Σ̂ + γnI)−1[(Σ + γnI)− (Σ̂ + γnI)](Σ + γnI)−1‖F + ‖ûû> − ûu> + ûu> − uu>‖F ‖(Σ + γnI)−1‖F
(a)

≤ ‖ûû>‖F ‖(Σ̂ + γnI)−1‖F ‖Σ− Σ̂‖F ‖Σ−1‖F + ‖ûû> − ûu> + ûu> − uu>‖F ‖Σ−1‖F
(b)

≤
√
J

γn
‖û‖22‖Σ− Σ̂‖F ‖Σ−1‖F +

(
‖û(û− u)>‖F + ‖(û− u)u>‖F

)
‖Σ−1‖F
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≤
√
J

γn
‖û‖22‖Σ− Σ̂‖F ‖Σ−1‖F + (‖û‖2 + ‖u‖2) ‖û− u‖2‖Σ−1‖F , (5)

where at (a) we used ‖(Σ + γnI)−1‖F ≤ ‖Σ−1‖F , at (b) we used ‖(Σ̂ + γnI)−1‖F ≤
√
J‖(Σ̂ + γnI)−1‖2 ≤

√
J/γn.

For (F)2, we have

(F)2 =
∣∣∣u> (Σ + γnI)

−1
u− u>Σ−1u

∣∣∣
=
∣∣〈uu>, (Σ + γnI)−1 −Σ−1

〉
F

∣∣

≤ ‖uu>‖F ‖(Σ + γnI)−1 −Σ−1‖F
= ‖u‖22‖(Σ + γnI)−1 [Σ− (Σ + γnI)] Σ−1‖F
≤ γn‖u‖22‖(Σ + γnI)−1‖F ‖Σ−1‖F
(a)

≤ γn‖u‖22‖Σ−1‖2F , (6)

where at (a) we used ‖(Σ + γnI)−1‖F ≤ ‖Σ−1‖F .

Combining (5) and (6), we have
∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u

∣∣∣

≤
√
J

γn
‖û‖2‖Σ− Σ̂‖F ‖Σ−1‖F + (‖û‖2 + ‖u‖2) ‖û− u‖2‖Σ−1‖F + γn‖u‖22‖Σ−1‖2F . (7)

Bounding ‖û‖22 and ‖u‖22 Here, we show that by the boundedness of the kernels k and l, it follows that ‖û‖22 is bounded.
Recall that supx,x′∈X |k(x,x′)| ≤ Bk, supy,y′ |l(y,y′)| ≤ Bl, our notation t = (v,w) for the test locations, and
zi := (xi,yi). We first show that the U-statistic core h is bounded.

|ht((x,y), (x′,y′))| =
∣∣∣∣
1

2
(k(x,v)− k(x′,v))(l(y,w)− l(y′,w))

∣∣∣∣

≤ 1

2
(|k(x,v)|+ |k(x′,v)|) (|l(y,w)|+ |l(y′,w)|)

≤ 2BkBl := 2B, (8)

where we define B := BkBl. It follows that

‖û‖22 =
J∑

m=1


 2

n(n− 1)

∑

i<j

htm(zi, zj)



2

≤
J∑

m=1

[2BkBl]
2

= 4B2J, (9)

‖u‖22 =
J∑

m=1

[EzEz′htm(z, z′)]
2 ≤ 4B2J. (10)

Using the upper bounds on ‖û‖22, ‖u‖22 ,(7) and the definition of c̃, we have
∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u

∣∣∣

≤
√
J

γn
4B2Jc̃‖Σ− Σ̂‖F + 4B

√
Jc̃‖û− u‖2 + 4B2Jc̃2γn

=:
c1
γn
‖Σ− Σ̂‖F + c2‖û− u‖2 + c3γn, (11)

where we define c1 := 4B2J
√
Jc̃, c2 := 4B

√
Jc̃, and c3 := 4B2Jc̃2. This upper bound implies that

|λ̂n − λn| ≤
c1
γn
n‖Σ− Σ̂‖F + c2n‖û− u‖2 + c3nγn. (12)

We will separately upper bound ‖Σ− Σ̂‖F and ‖û− u‖2, and combine them with a union bound.
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F.2.1. BOUNDING ‖û− u‖2
Let t∗ = arg maxt∈{t1,...,tJ} |û(t)− u(t)|. Recall that u = (u(t1), . . . , u(tJ))> = (u1, . . . , uJ)>.

‖û− u‖2 = sup
b∈B2(1)

〈b, û− u〉2 ≤ sup
b∈B2(1)

J∑

j=1

|bj ||û(tj)− u(tj)|

≤ |û(t∗)− u(t∗)| sup
b∈B2(1)

J∑

j=1

|bj |

(a)

≤
√
J |û(t∗)− u(t∗)| sup

b∈B2(1)

‖b‖2

=
√
J |û(t∗)− u(t∗)|, (13)

where at (a) we used ‖a‖1 ≤
√
J‖a‖2 for any a ∈ RJ . From (13), it can be seen that bounding ‖û − u‖2 amounts to

bounding the difference of a U-statistic û(t∗) (see (4)) to its expectation u(t∗). Combining (13) and (12), we have

|λ̂n − λn| ≤
c1
γn
n‖Σ− Σ̂‖F + c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (14)

F.2.2. BOUNDING ‖Σ̂−Σ‖F
The plan is to write Σ̂ = Ŝ − ûbûb>,Σ = S − uu>, so that ‖Σ̂ −Σ‖F ≤ ‖Ŝ − S‖F + ‖ûbûb> − uu>‖F and bound
separately ‖Ŝ− S‖F and ‖ûbûb> − uu>‖F .

Recall that Σij = η(ti, tj), η(t, t′) = Exy[
(
k̃(x,v)l̃(y,w)− u(v,w)

)(
k̃(x,v′)l̃(y,w′)− u(v′,w′)

)
] where k̃(x,v) =

k(x,v)− Ex′k(x′,v), and l̃(y,w) = l(y,w)− Ey′ l(y
′,w). Its empirical estimator (see Proposition 6) is Σ̂ij = η̂(ti, tj)

where

η̂(t, t′) =
1

n

n∑

i=1

[
(
k(xi,v)l(yi,w)− ûb(v,w)

)(
k(xi,v

′)l(yi,w
′)− ûb(v′,w′)

)
]

=
1

n

n∑

i=1

k(xi,v)l(yi,w)k(xi,v
′)l(yi,w

′)− ûb(v,w)ûb(v′,w′),

k(x,v) := k(x,v) − 1
n

∑n
i=1 k(xi,v), and l(y,w) := l(y,w) − 1

n

∑n
i=1 l(yi,w). We

note that 1
n

∑n
i=1 k(xi,v)l(yi,w) = ûb(v,w). We define Ŝ ∈ RJ×J such that Ŝij :=

1
n

∑n
m=1 k(xm,vi)l(ym,wi)k(xm,vj)l(yi,wj), and define similarly its population counterpart S such that

Sij := Exy[k̃(x,v)l̃(y,w)k̃(x,v′)l̃(y,w′)]. We have

Σ̂ = Ŝ− ûbûb>,

Σ = S− uu>,

‖Σ̂−Σ‖F = ‖Ŝ− S− (ûbûb> − uu>)‖F (15)

≤ ‖Ŝ− S‖F + ‖ûbûb> − uu>‖F . (16)

With (16), (14) becomes

|λ̂n − λn| ≤
c1n

γn
‖Ŝ− S‖F +

c1n

γn
‖ûbûb> − uu>‖F + c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (17)

We will further separately bound ‖Ŝ− S‖F and ‖ûbûb> − uu>‖F .

F.2.3. BOUNDING ‖ûbûb> − uu>‖F

‖ûbûb> − uu>‖F = ‖ûbûb> − ûbu> + ûbu> − uu>‖F
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≤ ‖ûb(ûb − u)>‖F + ‖(ûb − u)u>‖F
= ‖ûb‖2‖ûb − u‖2 + ‖ûb − u‖2‖u‖2
≤ 4B

√
J‖ûb − u‖2,

where we used (10) and the fact that ‖ûb‖2 ≤ 2B
√
J which can be shown similarly to (9) as

‖ûb‖22 =

J∑

m=1

[µ̂xy(vm,wm)− µ̂x(vm)µ̂y(wm)]
2

=

J∑

m=1


 1

n2

n∑

i=1

n∑

j=1

htm(zi, zj)



2

≤
J∑

m=1

[2BkBl]
2

= 4B2J.

Let (ṽ, w̃) := t̃ = arg maxt∈{t1,...,tJ} |ûb(t)− u(t)|. We bound ‖ûb − u‖2 by

‖ûb − u‖2
(a)

≤
√
J |ûb(t̃)− u(t̃)|

=
√
J
∣∣µ̂xy(t̃)− µ̂x(ṽ)µ̂y(w̃)− u(t̃)

∣∣

=
√
J
∣∣µ̂xy(t̃)− µ̂xµy(t̃) + µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)− u(t̃)

∣∣

≤
√
J
∣∣µ̂xy(t̃)− µ̂xµy(t̃)− u(t̃)

∣∣+
√
J
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣

=
√
J
∣∣û(t̃)− u(t̃)

∣∣+
√
J
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣ , (18)

where at (a) we used the same reasoning as in (13). The bias
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣ in the second term can be bounded
as

∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)
∣∣

=

∣∣∣∣∣∣
1

n(n− 1)

n∑

i=1

∑

j 6=i
k(xi, ṽ)l(yj , w̃)− 1

n2

n∑

i=1

n∑

j=1

k(xi, ṽ)l(yj , w̃)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

n(n− 1)

n∑

i=1

n∑

j=1

k(xi, ṽ)l(yj , w̃)− 1

n(n− 1)

n∑

i=1

k(xi, ṽ)l(yi, w̃)− 1

n2

n∑

i=1

n∑

j=1

k(xi, ṽ)l(yj , w̃)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

(
1− n

n− 1

)
1

n2

n∑

i=1

n∑

j=1

k(xi, ṽ)l(yj , w̃) +
1

n(n− 1)

n∑

i=1

k(xi, ṽ)l(yi, w̃)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

(
1− n

n− 1

)
1

n2

n∑

i=1

n∑

j=1

k(xi, ṽ)l(yj , w̃)

∣∣∣∣∣∣
+

∣∣∣∣∣
1

n(n− 1)

n∑

i=1

k(xi, ṽ)l(yi, w̃)

∣∣∣∣∣

≤ B

n− 1
+

B

n− 1
=

2B

n− 1
.

Combining this upper bound with (18), we have

‖ûbûb> − uu>‖F ≤ 4BJ
∣∣û(t̃)− u(t̃)

∣∣+
8B2J

n− 1
. (19)

With (19), (17) becomes

|λ̂n − λn| ≤
c1n

γn
‖Ŝ− S‖F +

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣+

c1n

γn

8B2J

n− 1
+ c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (20)

F.2.4. BOUNDING ‖Ŝ− S‖F
Recall that VJ = {t1, . . . , tJ}, Ŝij = Ŝ(ti, tj) = 1

n

∑n
m=1 k(xm,vi)l(ym,wi)k(xm,vj)l(ym,wj), and Sij =

S(ti, tj) = Exy[k̃(x,vi)l̃(y,wi)k̃(x,vj)l̃(y,wj)]. Let (t(1), t(2)) = arg max(s,t)∈VJ×VJ
|Ŝ(s, t)− S(s, t)|.
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‖Ŝ− S‖F = sup
B∈BF (1)

〈
B, Ŝ− S

〉
F

≤ sup
B∈BF (1)

J∑

i=1

J∑

j=1

|Bij ||Ŝij − Sij |

≤
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ sup
B∈BF (1)

J∑

i=1

J∑

j=1

|Bij |

(a)

≤ J
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ sup
B∈BF (1)

‖B‖F

= J
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ , (21)

where at (a) we used
∑J
i=1

∑J
j=1 |Aij | ≤ J‖A‖F for any matrix A ∈ RJ×J . We arrive at

|λ̂n − λn| ≤
c1Jn

γn

∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))
∣∣∣+

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣

+
c1n

γn

8B2J

n− 1
+ c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (22)

F.2.5. BOUNDING
∣∣∣Ŝ(t, t′)− S(t, t′)

∣∣∣

Having an upper bound for
∣∣∣Ŝ(t, t′)− S(t, t′)

∣∣∣ will allow us to bound (22). To keep the notations uncluttered, we will
define the following shorthands.

Expression Shorthand

k(x,v) a

k(x,v′) a′

k(xi,v) ai

k(xi,v
′) a′i

Ex∼Pxk(x,v) ã

Ex∼Pxk(x,v′) ã′

1
n

∑n
i=1 k(xi,v) a

1
n

∑n
i=1 k(xi,v

′) a′

Expression Shorthand

l(y,w) b

l(y,w′) b′

l(yi,w) bi

l(yi,w
′) b′i

Ey∼Py
l(y,w) b̃

Ey∼Py
l(y,w′) b̃′

1
n

∑n
i=1 l(yi,w) b

1
n

∑n
i=1 l(yi,w

′) b
′

We will also use · to denote a empirical expectation over x, or y, or (x,y). The argument under · will deter-
mine the variable over which we take the expectation. For instance, aa′ = 1

n

∑n
i=1 k(xi,v)k(xi,v

′) and aba′ =
1
n

∑n
i=1 k(xi,v)l(yi,w)k(xi,v

′), and so on. We define in the same way for the population expectation using ·̃ i.e.,
ãa′ = Ex [k(x,v)k(x,v′)] and ãba′ = Exy [k(x,v)l(y,w)k(x,v′)].

With these shorthands, we can rewrite Ŝ(t, t′) and S(t, t′) as

Ŝ(t, t′) =
1

n

n∑

i=1

(ai − a)(bi − b)(a′i − a′)(b′i − b
′
),

S(t, t′) = Exy

[
(a− ã)(b− b̃)(a′ − ã′)(b′ − b̃′)

]
.

By expanding S(t, t′), we have

S(t, t′) = Exy

[
+ aba′b′ − aba′b̃′ − abã′b′ + abã′b̃′
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− ab̃a′b′ + ab̃a′b̃′ + ab̃ã′b′ − ab̃ã′b̃′

− ãba′b′ + ãba′b̃′ + ãbã′b′ − ãbã′b̃′

+ ãb̃a′b′ − ãb̃a′b̃′ − ãb̃ã′b̃′ + ãb̃ã′b̃′
]

= +ãba′b′ − ãba′b̃′ − ãbb′ã′ + ãbã′b̃′

− ãa′b′b̃+ ãa′b̃b̃′ + ãb′ã′b̃− ãb̃ã′b̃′

− ã′bb′ã+ ã′bãb̃′ + ãã′b̃b′ − ãb̃ã′b̃′

+ ã′b′ãb̃− ãb̃ã′b̃′ − ãb̃ã′b̃′ + ãb̃ã′b̃′

= +ãba′b′ − ãba′b̃′ − ãbb′ã′ + ãbã′b̃′

− ãa′b′b̃+ ãa′b̃b̃′ + ãb′ã′b̃+ ã′b′ãb̃

− ã′bb′ã+ ã′bãb̃′ + ãã′b̃b′ − 3ãb̃ã′b̃′.

The expansion of Ŝ(t, t′) can be done in the same way. By the triangle inequality, we have
∣∣∣Ŝ(t, t′)− S(t, t′)

∣∣∣ ≤
∣∣∣aba′b′ − ãba′b′

∣∣∣+
∣∣∣aba′ b′ − ãba′b̃′

∣∣∣+
∣∣∣abb′a′ − ãbb′ã′

∣∣∣+
∣∣∣aba′b′ − ãbã′b̃′

∣∣∣
∣∣∣aa′b′ b− ãa′b′b̃

∣∣∣+
∣∣∣aa′ b b′ − ãa′b̃b̃′

∣∣∣+
∣∣∣ab′a′b− ãb′ã′b̃

∣∣∣+
∣∣∣a′b′ab− ã′b′ãb̃

∣∣∣
∣∣∣a′bb′a− ã′bb′ã

∣∣∣+
∣∣∣a′bab′ − ã′bãb̃′

∣∣∣+
∣∣∣a a′bb′ − ãã′b̃b′

∣∣∣+ 3
∣∣∣aba′b′ − ãb̃ã′b̃′

∣∣∣ .

The first term
∣∣∣aba′b′ − ãba′b′

∣∣∣ can be bounded by applying the Hoeffding’s inequality. Other terms can be bounded by
applying Lemma 9. Recall that we write (x1, . . . , xm)+ for max(x1, . . . , xm).

Bounding
∣∣∣aba′b′ − ãba′b′

∣∣∣ (1st term). Since −B2 ≤ aba′b′ ≤ B2, by the Hoeffding’s inequality (Lemma 14), we have

P
(∣∣∣aba′b′ − ãba′b′

∣∣∣ ≤ t
)
≥ 1− 2 exp

(
− nt2

2B4

)
.

Bounding
∣∣∣aba′ b′ − ãba′b̃′

∣∣∣ (2nd term). Let f1(x,y) = aba′ = k(x,v)l(y,w)k(x,v′) and f2(y) = b′ = l(y,w′). We
note that |f1(x,y)| ≤ (BBk, Bl)+ and |f2(y)| ≤ (BBk, Bl)+. Thus, by Lemma 9 with E = 2, we have

P
(∣∣∣aba′ b′ − ãba′b̃′

∣∣∣ ≤ t
)
≥ 1− 4 exp

(
− nt2

8(BBk, Bl)4+

)
.

Bounding
∣∣∣aba′b′ − ãbã′b̃′

∣∣∣ (4th term). Let f1(x,y) = ab = k(x,v)l(y,w), f2(x) = a′ = k(x,v′) and f3(y) = b′ =

l(y,w′). We can see that |f1(x,y)|, |f2(x)|, |f3(y)| ≤ (B,Bk, Bl)+. Thus, by Lemma 9 with E = 3, we have

P
(∣∣∣aba′b′ − ãbã′b̃′

∣∣∣ ≤ t
)
≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
.

Bounding
∣∣∣aba′b′ − ãb̃ã′b̃′

∣∣∣ (last term). Let f1(x) = a = k(x,v), f2(y) = b = l(y,w), f3(x) = a′ = k(x,v′) and
f4(y) = b′ = l(y,w′). It can be seen that |f1(x)|, |f2(y)|, |f3(x)|, |f4(y)| ≤ (Bk, Bl)+. Thus, by Lemma 9 with E = 4,
we have

P
(

3
∣∣∣aba′b′ − ãb̃ã′b̃′

∣∣∣ ≤ t
)
≥ 1− 8 exp

(
− nt2

32 · 32(Bk, Bl)8+

)
.

Bounds for other terms can be derived in a similar way to yield

(3rd term) P
(∣∣∣abb′a′ − ãbb′ã′

∣∣∣ ≤ t
)
≥ 1− 4 exp

(
− nt2

8(BBl, Bk)4+

)
,
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(5th term) P
(∣∣∣aa′b′ b− ãa′b′b̃

∣∣∣ ≤ t
)
≥ 1− 4 exp

(
− nt2

8(BBk, Bl)4+

)
,

(6th term) P
(∣∣∣aa′ b b′ − ãa′b̃b̃′

∣∣∣ ≤ t
)
≥ 1− 6 exp

(
− nt2

18(B2
k, Bl)

6
+

)
,

(7th term) P
(∣∣∣ab′a′b− ãb′ã′b̃

∣∣∣ ≤ t
)
≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
,

(8th term) P
(∣∣∣a′b′ab− ã′b′ãb̃

∣∣∣ ≤ t
)
≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
,

(9th term) P
(∣∣∣a′bb′a− ã′bb′ã

∣∣∣ ≤ t
)
≥ 1− 4 exp

(
− nt2

8(BBl, Bk)4+

)
,

(10th term) P
(∣∣∣a′bab′ − ã′bãb̃′

∣∣∣ ≤ t
)
≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
,

(11th term) P
(∣∣∣a a′bb′ − ãã′b̃b′

∣∣∣ ≤ t
)
≥ 1− 6 exp

(
− nt2

18(Bk, B2
l )6+

)
.

By the union bound, we have

P
(∣∣∣Ŝ(t, t′)− S(t, t′)

∣∣∣ ≤ 12t
)

≥ 1−
[
2 exp

(
− nt2

2B4

)
+ 4 exp

(
− nt2

8(BBk, Bl)4+

)
+ 4 exp

(
− nt2

8(BBl, Bk)4+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)

4 exp

(
− nt2

8(BBk, Bl)4+

)
+ 6 exp

(
− nt2

18(B2
k, Bl)6+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)

4 exp

(
− nt2

8(BBl, Bk)4+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
+ 6 exp

(
− nt2

18(Bk, B2
l )

6
+

)
+ 8 exp

(
− nt2

32 · 32(Bk, Bl)8+

)]

= 1−
[
2 exp

(
− nt2

2B4

)
+ 8 exp

(
− nt2

8(BBk, Bl)4+

)
+ 8 exp

(
− nt2

8(BBl, Bk)4+

)
+ 24 exp

(
− nt2

18(B,Bk, Bl)6+

)

+ 6 exp

(
− nt2

18(B2
k, Bl)6+

)
+ 6 exp

(
− nt2

18(Bk, B2
l )

6
+

)
+ 8 exp

(
− nt2

32 · 32(Bk, Bl)8+

)]

≥ 1−
[
2 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)
+ 24 exp

(
−122nt2

B∗

)

+ 6 exp

(
−122nt2

B∗

)
+ 6 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)]

= 1− 62 exp

(
−122nt2

B∗

)
,

where

B∗ :=
1

122
max(2B4, 8(BBk, Bl)

4
+, 8(BBl, Bk)4+, 18(B,Bk, Bl)

6
+, 18(B2

k, Bl)
6
+, 18(Bk, B

2
l )6+, 32 · 32(Bk, Bl)

8
+).

By reparameterization, it follows that

P
(
c1Jn

γn

∣∣∣Ŝ(t, t′)− S(t, t′)
∣∣∣ ≤ t

)
≥ 1− 62 exp

(
− γ2nt

2

c21J
2nB∗

)
. (23)

F.2.6. UNION BOUND FOR
∣∣∣λ̂n − λn

∣∣∣ AND FINAL LOWER BOUND

Recall from (22) that

|λ̂n − λn| ≤
c1Jn

γn

∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))
∣∣∣+

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣

+
c1n

γn

8B2J

n− 1
+ c2n

√
J |û(t∗)− u(t∗)|+ c3nγn.
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We will bound terms in (22) separately and combine all the bounds with the union bound. As shown in (8), the U-statistic
core h is bounded between −2B and 2B. Thus, by Lemma 13 (with m = 2), we have

P
(
c2n
√
J |û(t∗)− u(t∗)| ≤ t

)
≥ 1− 2 exp

(
− b0.5nct

2

8c22n
2JB2

)
. (24)

Bounding c1n
γn

8B2J
n−1 + c3nγn + 4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣. By Lemma 13 (with m = 2), it follows that

P
(
c1n

γn

8B2J

n− 1
+ c3nγn +

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣ ≤ t

)

≥ 1− 2 exp


−
b0.5ncγ2n

[
t− c1n

γn
8B2J
n−1 − c3nγn

]2

27B4J2c21n
2




= 1− 2 exp

(
−b0.5nc

[
tγn(n− 1)− 8c1B

2nJ − c3n(n− 1)γ2n
]2

27B4J2c21n
2(n− 1)2

)

(a)

≥ 1− 2 exp

(
−
[
tγn(n− 1)− 8c1B

2nJ − c3n(n− 1)γ2n
]2

28B4J2c21n
2(n− 1)

)
, (25)

where at (a) we used b0.5nc ≥ (n − 1)/2. Combining (23), (24), and (25) with the union bound (set T = 3t), we can
bound (22) with

P
(∣∣∣λ̂n − λn

∣∣∣ ≤ T
)
≥ 1− 62 exp

(
− γ2nT

2

32c21J
2nB∗

)
− 2 exp

(
− b0.5ncT

2

72c22n
2JB2

)

− 2 exp

(
−
[
Tγn(n− 1)/3− 8c1B

2nJ − c3γ2nn(n− 1)
]2

28B4J2c21n
2(n− 1)

)
.

Since
∣∣∣λ̂n − λn

∣∣∣ ≤ T implies λ̂n ≥ λn − T , a reparametrization with r = λn − T gives

P
(
λ̂n ≥ r

)
≥ 1− 62 exp

(
−γ

2
n(λn − r)2

32c21J
2nB∗

)
− 2 exp

(
−b0.5nc(λn − r)

2

72c22n
2JB2

)

− 2 exp

(
−
[
(λn − r)γn(n− 1)/3− 8c1B

2nJ − c3γ2nn(n− 1)
]2

28B4J2c21n
2(n− 1)

)

:= L(λn).

Grouping constants into ξ1, . . . ξ5 gives the result.

The lower bound L(λn) takes the form

1− 62 exp
(
−C1(λn − Tα)2

)
− 2 exp

(
−C2(λn − Tα)2

)
− 2 exp

(
− [(λn − Tα)C3 − C4]2

C5

)
,

where C1, . . . , C5 are positive constants. For fixed large enough n such that λn > Tα, and fixed significance level α,
increasing λn will increase L(λn). Specifically, since n is fixed, increasing u>Σ−1u in λn = nu>Σ−1u will increase
L(λn).

G. Helper Lemmas
This section contains lemmas used to prove the main results in this work.

Lemma 8 (Product to sum). Assume that |ai| ≤ B, |bi| ≤ B for i = 1, . . . , E. Then
∣∣∣
∏E
i=1 ai −

∏E
i=1 bi

∣∣∣ ≤
BE−1

∑E
j=1 |aj − bj |.
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Proof.
∣∣∣∣∣∣

E∏

i=1

ai −
E∏

j=1

bj

∣∣∣∣∣∣
≤
∣∣∣∣∣
E∏

i=1

ai −
E−1∏

i=1

aibE

∣∣∣∣∣+

∣∣∣∣∣
E−1∏

i=1

aibE −
E−2∏

i=1

aibE−1bE

∣∣∣∣∣+ . . .+

∣∣∣∣∣∣
a1

E∏

j=2

bj −
E∏

j=1

bj

∣∣∣∣∣∣

≤ |aE − bE |
∣∣∣∣∣
E−1∏

i=1

ai

∣∣∣∣∣+ |aE−1 − bE−1|
∣∣∣∣∣

(
E−2∏

i=1

ai

)
bE

∣∣∣∣∣+ . . .+ |a1 − b1|

∣∣∣∣∣∣

E∏

j=2

bj

∣∣∣∣∣∣
≤ |aE − bE |BE−1 + |aE−1 − bE−1|BE−1 + . . .+ |a1 − b1|BE−1

= BE−1
E∑

j=1

|aj − bj |

applying triangle inequality, and the boundedness of ai and bi-s.

Lemma 9 (Product variant of the Hoeffding’s inequality). For i = 1, . . . , E, let {x(i)
j }ni

j=1 ⊂ Xi be an i.i.d. sample from
a distribution Pi, and fi : Xi 7→ R be a measurable function. Note that it is possible that P1 = P2 = · · · = PE and
{x(1)

j }n1
j=1 = · · · = {x(E)

j }nE
j=1. Assume that |fi(x)| ≤ B < ∞ for all x ∈ Xi and i = 1, . . . , E. Write P̂i to denote an

empirical distribution based on the sample {x(i)
j }ni

j=1. Then,

P

(∣∣∣∣∣

[
E∏

i=1

Ex(i)∼P̂i
fi(x

(i))

]
−
[
E∏

i=1

Ex(i)∼Pi
fi(x

(i))

]∣∣∣∣∣ ≤ T
)
≥ 1− 2

E∑

i=1

exp

(
− niT

2

2E2B2E

)
.

Proof. By Lemma 8, we have
∣∣∣∣∣

[
E∏

i=1

Ex(i)∼P̂i
fi(x

(i))

]
−
[
E∏

i=1

Ex(i)∼Pi
fi(x

(i))

]∣∣∣∣∣ ≤ B
E−1

E∑

i=1

∣∣∣Ex(i)∼P̂i
fi(x

(i))− Ex(i)∼Pi
fi(x

(i))
∣∣∣ .

By applying the Hoeffding’s inequality to each term in the sum, we have P
(∣∣∣Ex(i)∼P̂i

fi(x
(i))− Ex(i)∼Pi

fi(x
(i))
∣∣∣ ≤ t

)
≥

1− 2 exp
(
− 2nit

2

4B2

)
. The result is obtained with a union bound.

H. External Lemmas
In this section, we provide known results referred to in this work.
Lemma 10 (Chwialkowski et al. (2015, Lemma 1)). If k is a bounded, analytic kernel (in the sense given in Definition 1) on
Rd × Rd, then all functions in the RKHS defined by k are analytic.

Lemma 11 (Chwialkowski et al. (2015, Lemma 3)). Let Λ be an injective mapping from the space of probability measures
into a space of analytic functions on Rd. Define

d2VJ
(P,Q) =

J∑

j=1

|[ΛP ](vj)− [ΛQ](vj)|2 ,

where VJ = {vi}Ji=1 are vector-valued i.i.d. random variables from a distribution which is absolutely continuous with
respect to the Lebesgue measure. Then, dVJ

(P,Q) is almost surely (w.r.t. VJ ) a metric.

Lemma 12 (Bochner’s theorem (Rudin, 2011)). A continuous function Ψ : Rd → R is positive definite if and only if it is
the Fourier transform of a finite nonnegative Borel measure ζ on Rd, that is, Ψ(x) =

∫
Rd e

−ix>ω dζ(ω), x ∈ Rd.
Lemma 13 (A bound for U-statistics (Serfling, 2009, Theorem A, p. 201)). Let h(x1, . . . ,xm) be a U-statistic kernel for
an m-order U-statistic such that h(x1, . . . ,xm) ∈ [a, b] where a ≤ b <∞. Let Un =

(
n
m

)−1∑
i1<···<im h(xi1 , . . . ,xim)

be a U-statistic computed with a sample of size n, where the summation is over the
(
n
m

)
combinations of m distinct elements

{i1, . . . , im} from {1, . . . , n}. Then, for t > 0 and n ≥ m,

P(Un − Eh(x1, . . . ,xm) ≥ t) ≤ exp
(
−2bn/mct2/(b− a)2

)
,
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P(|Un − Eh(x1, . . . ,xm)| ≥ t) ≤ 2 exp
(
−2bn/mct2/(b− a)2

)
,

where bxc denotes the greatest integer which is smaller than or equal to x. Hoeffind’s inequality is a special case when
m = 1.

Lemma 14 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. random variables such that a ≤ Xi ≤ b almost surely.
Define X := 1

n

∑n
i=1Xi. Then,

P
(∣∣X − E[X]

∣∣ ≤ α
)
≥ 1− 2 exp

(
− 2nα2

(b− a)2

)
.

References
[sup4] K. P. Chwialkowski, A. Ramdas, D. Sejdinovic, and A. Gretton. Fast Two-Sample Testing with Analytic Representations

of Probability Measures. In Advances in Neural Information Processing Systems (NIPS), pages 1981–1989. 2015.

[sup14] W. Jitkrittum, Z. Szabó, K. Chwialkowski, and A. Gretton. Interpretable Distribution Features with Maximum Testing
Power. 2016. URL http://arxiv.org/abs/1605.06796.

[sup3] W. Rudin. Fourier analysis on groups. John Wiley & Sons, 2011.

[sup20] R. J. Serfling. Approximation Theorems of Mathematical Statistics. John Wiley & Sons, 2009.


