
Just-In-Time Kernel Regression for Expectation Propagation

Wittawat Jitkrittum1 WITTAWATJ@GMAIL.COM
Arthur Gretton1 ARTHUR.GRETTON@GMAIL.COM
Nicolas Heess∗ NHEESS@GMAIL.COM
S. M. Ali Eslami∗ ALI@ARKITUS.COM
Balaji Lakshminarayanan1 BALAJI@GATSBY.UCL.AC.UK
Dino Sejdinovic2 DINO.SEJDINOVIC@GMAIL.COM
Zoltán Szabó1 ZOLTAN.SZABO@GATSBY.UCL.AC.UK
1Gatsby Unit, University College London
2University of Oxford

Abstract
We propose an efficient nonparametric strategy
for learning a message operator in expectation
propagation (EP), which takes as input the set
of incoming messages to a factor node, and pro-
duces an outgoing message as output. This
learned operator replaces the multivariate inte-
gral required in classical EP, which may not have
an analytic expression. We use kernel-based re-
gression, which is trained on a set of probabil-
ity distributions representing the incoming mes-
sages, and the associated outgoing messages.
The kernel approach has two main advantages:
first, it is fast, as it is implemented using a novel
two-layer random feature representation of the
input message distributions; second, it has prin-
cipled uncertainty estimates, and can be cheaply
updated online, meaning it can request and in-
corporate new training data when it encounters
inputs on which it is uncertain. In experiments,
our approach is able to solve learning problems
where a single message operator is required for
multiple, substantially different data sets (logis-
tic regression for a variety of classification prob-
lems), where it is essential to accurately assess
uncertainty and to efficiently and robustly update
the message operator.

1. Introduction
An increasing priority in Bayesian modelling is to make
inference accessible and implementable for practitioners,
without requiring specialist knowledge. This is a goal
sought in probabilistic programming languages (Wingate

∗ Currently at Google DeepMind.

et al., 2011; Goodman et al., 2008), as well as in more gran-
ular, component-based systems (Stan Development Team,
2014; Minka et al., 2014). In all cases, the user should be
able to freely specify what they wish their model to ex-
press, without having to deal with the complexities of sam-
pling, variational approximation, or distribution conjugacy.
In reality, however, model convenience and simplicity can
limit or undermine intended models. In general, more ex-
pressive, freely chosen models are more likely to require
expensive sampling or quadrature approaches, which can
make them challenging to implement or impractical to run.

In this work, we address the particular setting of expec-
tation propagation (EP; Minka, 2001), a message passing
algorithm wherein messages are confined to being mem-
bers of a particular parametric family. Sending EP outgo-
ing messages requires an expensive computation involving
integrating incoming messages over a factor potential, and
projecting the result onto the chosen family. We propose a
novel, kernel-based approach to learning a message opera-
tor nonparametrically for EP. The learning algorithm takes
the form of a distribution regression problem, where the
inputs are probability measures (incoming messages), and
the outputs are vectors of message parameters (Szabó et al.,
2014).

Being an instance of Gaussian process regression, there are
well established estimates of predictive uncertainty (Ras-
mussen and Williams, 2006, Ch. 2). We use these un-
certainty estimates to determine when to query the oracle
for additional input/output pairs. To make the algorithm
computationally tractable, we regress directly in the pri-
mal from random Fourier features of the data (Rahimi and
Recht, 2007; Le et al., 2013; Yang et al., 2015). In par-
ticular, we establish a novel random feature representation
for when inputs are distributions, via a two-level random
feature approach.

Just-In-Time Kernel Regression for Expectation Propagation

2. Background
We assume that distributions (or densities) p over a set of
variables x = (x1, . . . xd) of interest can be represented as
factor graphs, i.e. p(x) = 1

Z

∏J
j=1 fj(xne(fj)). The fac-

tors fj are non-negative functions which are defined over
subsets xne(fj) of the full set of variables x. These vari-
ables form the neighbors of the factor node fj in the factor
graph, and we use ne(fj) to denote the corresponding set
of indices. Z is the normalization constant.

We deal with models in which some of the factors have
a non-standard form, or may not have a known analytic
expression (i.e. “black box” factors). Although our ap-
proach applies to any such factor in principle, in this paper
we focus on directed factors f(xout|xin) which specify a
conditional distribution over variables xout given xin (and
thus xne(f) = (xout,xin)). The only assumption we make
is that we are provided with a forward sampling function
f : xin 7→ xout. In particular, the ability to evaluate the
value of f(xout|xin) is not assumed.

Expectation propagation Expectation Propagation (EP)
is an approximate iterative procedure for computing
marginal beliefs of variables by iteratively passing mes-
sages between variables and factors until convergence
(Minka, 2001). The message mf→V (xV) from factor f
to variable V ∈ ne(f) is

proj
[∫

f(xne(f))
∏
V ′∈ne(f)mV ′→f (xV ′)dxne(f)\V

]
mV→f (xV)

,

(1)
where mV ′→f are the messages sent to factor f
from all of its neighboring variables xV ′ , proj [p] =
argminq∈QKL [p||q], and Q is in the exponential family.

Computing the numerator of (1) can be challenging and
often requires hand-crafted approximations, or the use of
expensive numerical integration techniques; for “black-
box” factors f implemented as forward sampling functions,
fully nonparametric techniques are needed. Barthelmé
and Chopin (2011); Heess et al. (2013); Eslami et al.
(2014) propose an alternative approach to the integration
and projection step based on the following well known re-
sult. When the projection proj is to a member q(x|η) =
h(x) exp

(
η>u(x)−A(η)

)
of an exponential family, one

simply computes the expectation of the sufficient statistic
u(·) under the numerator of (1). The estimated expected
sufficient statistics provide us with an estimate of the pa-
rameters η of the result q of the projection proj [p], from
which the message is readily computed.

Learning to pass EP messages One approach to com-
pute the expected sufficient statistics, due to Barthelmé and
Chopin (2011), is via importance sampling. While these

estimates converge to the desired integrals for a sufficient
number of importance samples, the sampling procedure
must be run at every iteration during inference, hence it
is not viable for large-scale problems.

An improvement on this approach is to use importance
sampled instances of input/output message pairs to train a
regression algorithm, which can then be used in place of
the sampler. Heess et al. (2013) use a neural network to
learn the mapping from incoming to outgoing messages.
Specifically, they trained a neural network to directly map
(mV ′→f)V ′∈ne(f) to mf→V , i.e. they learn a mapping
Mθ
f→V : (mV ′→f)V ′∈ne(f) 7→ mf→V , where θ are the

parameters of the approximator.

Although the learned mappings perform well on a variety
of practical problems, this approach comes with a disad-
vantage: it requires training data that cover the entire set
of possible input messages for a given type of problem
(e.g., datasets representative of all classification problems
the user proposes to solve), and it has no way of assessing
the uncertainty of its prediction, or of updating the model
online in the event that a prediction is uncertain.

The disadvantages of the neural network approach were the
basis for work by Eslami et al. (2014), who replaced the
neural networks with random forests. The random forests
provided uncertainty estimates for each prediction. This
allowed them to be trained ‘just-in-time’, during EP infer-
ence, whenever the predictor decides it is uncertain. That
is, if the uncertainty on the current input messages exceeds
a pre-defined threshold, the required outgoing message is
approximated via importance sampling and Mθ

f→V is up-
dated on this new data point (leading to a new set of pa-
rameters θ′). However, uncertainty estimation for random
forests relies on unproven heuristics: such heuristics can
become highly misleading as we move away from the train-
ing data.

3. Kernel learning of operators
We now propose a kernel regression method for jointly
learning the message operator Mθ

f→V and uncertainty es-
timate. We regress from the tuple of incoming messages,
which are probability distributions, to the parameters of the
outgoing message.

3.1. Kernels on tuples of distributions

In contrast to Eslami et al. (2014); Heess et al. (2013) our
kernel-based approach does not need a pre-specified cus-
tomized features to represent incoming messages. Rather,
we use a general characteristic kernel operated directly on
distributions (Christmann and Steinwart, 2010, eq. 9). The
kernel is independent of the parameterization of incoming
messages.

Just-In-Time Kernel Regression for Expectation Propagation

Algorithm 1 Construction of two-stage random features
for κ

Input: Input distribution r, Fourier transform k̂ of the em-
bedding translation-invariant kernel k, number of in-
ner features Din, number of outer features Dout, outer
Gaussian width γ2.

Output: Random features ψ̂(r) ∈ RDout .
1: Sample {ωi}Din

i=1
i.i.d∼ k̂.

2: Sample {bi}Din
i=1

i.i.d∼ Uniform[0, 2π].

3: φ̂(r) =
√

2
Din

(
Ex∼r cos(ω>i x+ bi)

)Din

i=1
∈ RDin

If r(x) = N (x;m,Σ),

φ̂(r) =

√
2

Din

(
cos(ω>i m+ bi) exp

(
−1

2
ω>i Σωi

))Din

i=1

.

4: Sample {νi}Dout
i=1

i.i.d∼ k̂gauss(γ
2) i.e., Fourier transform of a

Gaussian kernel with width γ2.
5: Sample {ci}Dout

i=1

i.i.d∼ Uniform[0, 2π].

6: ψ̂(r) =
√

2
Dout

(
cos(ν>i φ̂(r) + ci)

)Dout

i=1
∈ RDout

In the following, we consider only a single factor, and
therefore drop the factor identity from our notation. We
write the set of c incoming messages to a factor node as a
tuple of probability distributions R := (r(l))cl=1 of random
variables X(l) on respective domains X (l). Our goal is to
define a kernel between one such tuple, and a second one,
which we will write S := (s(l))cl=1.

We define our kernel in terms of embeddings of the tu-
ples R,S into a reproducing kernel Hilbert space (RKHS).
We first consider the embedding of a single distribution
in the tuple: Let us define an RKHS H(l) on each do-
main, with respective kernel k(l)(x(l)1 , x

(l)
2). We may em-

bed individual probability distributions to these RKHSs,
following Smola et al. (2007). The mean embedding of
r(l) is written µr(l)(·) :=

∫
k(l)(x(l), ·) dr(l)(x(l)). Sim-

ilarly, a mean embedding may be defined on the prod-
uct of messages in a tuple r = ×cl=1r

(l) as µr :=∫
k([x(1), . . . , x(c)], ·) dr(x(1), . . . , x(c)), where we have

defined the joint kernel k on the product space X (1)×· · ·×
X (c). Finally, a kernel on two such embeddings µr, µs of
tuplesR,S can be obtained as in Christmann and Steinwart
(2010, eq. 9),

κ(r, s) = exp

(
−‖µr − µs‖2H

2γ2

)
. (2)

This kernel has two parameters: γ2, and the width parame-
ter of the kernel k defining µr = Ex∼rk(x, ·).

3.2. Random feature approximations

One approach to learning the mappingMθ
f→V from incom-

ing to outgoing messages would be to employ Gaussian
process regression, using the kernel (2). This approach
is not suited to just-in-time (JIT) learning, however, as
both prediction and storage costs grow with the size of the
training set. Instead, we define a finite-dimensional ran-
dom feature map ψ̂(r), ψ̂(s) ∈ RDout such that κ(r, s) ≈
ψ̂(r)>ψ̂(s), and regress directly on these feature maps in
the primal: storage and computation are then a function of
the dimension of the feature map Dout, yet performance is
close to that obtained using a kernel.

In (Rahimi and Recht, 2007), a method based on Fourier
transforms was proposed for computing a vector of random
features ϕ̂ for a translation invariant kernel k(x, y) = k(x−
y) such that k(x, y) ≈ ϕ̂(x)>ϕ̂(y) where x, y ∈ Rd and
ϕ̂(x), ϕ̂(y) ∈ RDin . We will follow a similar approach,
and derive a two-stage set of random Fourier features for
(2).

We start by expanding the exponent of (2) as

exp

(
− 1

2γ2
〈µr, µr〉+

1

γ2
〈µr, µs〉 −

1

2γ2
〈µs, µs〉

)
.

Assume that the embedding kernel k used to define the
embeddings µr and µs is translation invariant. Since
〈µr, µs〉 = Ex∼rEy∼sk(x − y), one can use the result of
(Rahimi and Recht, 2007) to write

〈µr, µs〉 ≈ Ex∼rEy∼sϕ̂(x)>ϕ̂(y)

= Ex∼rϕ̂(x)>Ey∼sϕ̂(y) := φ̂(r)>φ̂(s),

where the mappings φ̂(r), φ̂(s) are Din standard Rahimi-
Recht random features, shown in Steps 1-3 of Algorithm 1.

With the approximation of 〈µr, µs〉, we have κ(r, s) ≈

exp

(
−‖φ̂(r)−φ̂(s)‖

2
Din

2γ2

)
, which is a standard Gaussian ker-

nel on RDin . We can thus further approximate this Gaus-
sian kernel by the random Fourier features of Rahimi and
Recht to obtain a vector of random features ψ̂(r), ψ̂(s) ∈
RDout such that κ(r, s) ≈ ψ̂(r)>ψ̂(s). Pseudocode for
generating the random features ψ̂ is given in Algorithm 1.
For the implementation, {ωi}Din

i=1 , {bi}
Din

i=1 , {νi}
Dout

i=1 and
{ci}Dout

i=1 need to be sampled only once, where Din and
Dout are the number of random features used. In the ex-
periments, we use a Gaussian kernel for k.

3.3. Regression for operator prediction

Let X = (x1| · · · |xN) be the N training samples of
incoming messages to a factor node, and let Y =(
ExV ∼q1f→V

u(xV)| · · · |ExV ∼qNf→V
u(xV)

)
∈ RDy×N be

the expected sufficient statistics of the corresponding out-
put messages, where qif→V is the numerator of (1). We

Just-In-Time Kernel Regression for Expectation Propagation

write xi = ψ̂(ri) as a more compact notation for the ran-
dom feature vector representing the ith training tuple of
incoming messages, as computed via Algorithm 1.

Since we require uncertainty estimates on our predictions,
we perform Bayesian linear regression from the random
features to the output messages, which yields predictions
close to those obtained by Gaussian process regression with
the kernel in (2). The uncertainty estimate in this case will
be the predictive variance. We assume priors

w ∼ N
(
w; 0, IDout

σ2
0

)
, (3)

Y | X, w ∼ N
(
Y;w>X, σ2

yIN
)
, (4)

where the output noise variance σ2
y captures the intrinsic

stochasticity of the importance sampler used to generate Y.
It follows that the posterior of w is given by Bishop (2006)

p(w|Y) = N (w;µw,Σw), (5)

Σw =
(
XX>σ−2y + σ−20 I

)−1
, (6)

µw = ΣwXY
>σ−2y . (7)

The predictive distribution on the output y∗ given an obser-
vation x∗ is

p(y∗|x∗,Y) = N
(
y∗; x∗>µw, x

∗>Σwx
∗ + σ2

y

)
. (8)

For simplicity, we treat each output (expected sufficient
statistic) as a separate regression problem. Treating all out-
puts jointly can be achieved with a multi-output kernel (Al-
varez et al., 2011).

Online update Let ·(N) denote a quantity constructed
from N samples. The posterior covariance matrix at time
N + 1 can be written as

Σ(N+1)
w = Σ(N)

w −
Σ

(N)
w xN+1x

>
N+1Σ

(N)
w σ−2y

1 + x>N+1Σ
(N)
w xN+1σ

−2
y

, (9)

meaning it can be expressed as an inexpensive update of the
covariance at time N . Updating µw can be easily achieved
by maintaining XY>.

4. Experiments
We evaluate our learned message operator using two differ-
ent factors: the logistic factor, and the compound gamma
factor. For all experiments we used Infer.NET (Minka
et al., 2014) with its extensible factor interface for our
own operator. We used the default settings of Infer.NET
unless stated otherwise. Code is available at https:
//github.com/wittawatj/kernel-ep.

Experiment 1: Logistic factor As in Heess et al. (2013);
Eslami et al. (2014), we study the logistic factor f(p|z) =

δ
(
p− 1

1+exp(−z)

)
, where δ is the Dirac delta function, in

the context of a binary logistic regression model (Fig. 1).
The factor is deterministic and there are two incom-
ing messages: mpi→f = Beta(pi;α, β) and mzi→f =
N (zi;µ, σ

2), where zi = w>xi represents the dot prod-
uct between an observation xi ∈ Rd and the coefficient
vector w whose posterior is to be inferred.

xi

dot

w

zi
logistic (f)

pi
Bernoulli

yi

i = 1, . . . , N

Figure 1: Factor graph for binary logistic regression. The
kernel-based message operator learns to approximate the
logistic factor highlighted in red.

We test the approximate operator in the logistic regression
model as part of the full EP inference loop in a just-in-time
learning setting (KJIT). We used four binary classification
datasets from the UCI repository (Lichman, 2013): ban-
knote authentication, blood transfusion, fertility and iono-
sphere, in binary logistic regression setting. The operator
was required to learn just-in-time to send outgoing mes-
sages mf→zi and mf→pi on the four problems presented
in sequence. The training observations consisted of 200
data points subsampled from each dataset by stratified sam-
pling. For the fertility dataset, which contains only 100 data
points, we subsampled half the points. The remaining data
were used as test sets.

We employed a “mini-batch” learning approach in which
the operator always consults the oracle in the first few hun-
dred factor invocations for initial batch training. In princi-
ple, during the initial batch training, the operator can per-
form cross validation or optimize the marginal likelihood
for parameter selection; however for computational sim-
plicity we set the kernel parameters according to the me-
dian heuristic (Schölkopf and Smola, 2002). The numbers
of random features were Din = 300 and Dout = 500; em-
pirically, we observed no significant improvements beyond
1,000 random features. The output noise variance σ2

y was
fixed to 10−4 and the uncertainty threshold on the log pre-
dictive variance (over which the oracle is queried) was set
to -9. To simulate a black-box setup, we used an impor-
tance sampler as the oracle rather than Infer.NET’s factor
implementation, where the proposal distribution was fixed
toN (z; 0, 200) with 5×105 particles. We set the maximum
number of EP iterations to 10 in each problem.

Classification errors on the test sets and inference times are
shown in Fig. 3a and Fig. 3b, respectively. The results
demonstrate that KJIT improves the inference time on all
the problems without sacrificing inference accuracy. The
predictive variance of each outgoing message is shown in

Just-In-Time Kernel Regression for Expectation Propagation

1000 2000 3000 4000 5000 6000

−9.2

−9

−8.8

−8.6

−8.4

Banknote Blood Fertility Ionosphere

Lo
g

pr
ed

ic
tiv

e
va

ria
nc

e

Factor invocations

Predictive variance
Moving average
Threshold

Figure 2: Uncertainty estimate of KJIT for outgoing messages on the four UCI datasets.

Banknote Blood Fertility Ionosphere
0

0.2

0.4

0.6

E
rr

or

Infer.NET

Sampling

Sampling + KJIT

(a) Binary classification error
Banknote Blood Fertility Ionosphere

0.5

1

1.5

2

2.5

x 10
5

T
im

e
in

 m
s

Sampling

Sampling + KJIT

(b) Inference time

Figure 3: Classification performance and inference times
on the four UCI datasets.

Fig. 2. An essential feature to notice is the rapid increase
of the uncertainty after the first EP iteration of each prob-
lem. The sharp rise followed by a steady decrease of the
uncertainty is a good indicator that the operator is able to
promptly detect a change in input message distribution, and
robustly adapt to this new distribution by querying the ora-
cle.

Experiment 2: Compound gamma factor We next simu-
late the compound gamma factor, a heavy-tailed prior dis-
tribution on the precision of a Gaussian random variable.
A variable τ is said to follow the compound gamma dis-
tribution if τ ∼ Gamma(τ ; s2, r2) (shape-rate parameter-
ization) and r2 ∼ Gamma(r2; s1, r1) where (s1, r1, s2)
are parameters. The task we consider is to infer the pos-
terior of the precision τ of a normally distributed vari-
able x ∼ N (x; 0, τ) given realizations {xi}ni=1. We con-
sider the setting (s1, r1, s2) = (1, 1, 1) which was used in
(Heess et al., 2013). Infer.NET’s implementation requires
two gamma factors to specify the compound gamma. Here,
we collapse them into one factor and let the operator learn
to directly send an outgoing message mf→τ given mτ→f ,
using Infer.NET as the oracle. The default implementation
of Infer.NET relies on a quadrature method. As in (Es-
lami et al., 2014), we sequentially presented a number of
problems to our algorithm, where at the beginning of each
problem, a random number of observations from 10 to 100,
and the parameter τ , were drawn from the model.

Fig. 4a and Fig. 4b summarize the inferred posterior param-
eters obtained from running only Infer.NET and Infer.NET
+ KJIT, i.e., KJIT with Infer.NET as the oracle. Fig. 4c
shows the inference time of both methods. The plots collec-
tively show that KJIT can deliver posteriors in good agree-

2 2.5 3 3.5

2

2.5

3

3.5

Inferred by Infer.NET + KJIT

In
fe

rr
ed

 b
y

In
fe

r.
N

E
T

Correlation: 1

Log shape

(a) Inferred shape

0 5 10

0

5

10

Infered by Infer.NET + KJIT

In
fe

rr
ed

 b
y

In
fe

r.
N

E
T

Correlation: 0.999895

Log rate

(b) Inferred rate

0 500 1000 1500
0

2

4

6

8

10

T
im

e
in

 lo
g(

m
s)

Problems seen

Inference time

Infer.NET
Infer.NET + KJIT

(c) Inference time

Figure 4: Shape (a) and rate (b) parameters of the inferred
posteriors in the compound gamma problem. (c) KJIT is
able to infer equally good posterior parameters compared
to Infer.NET while requiring a runtime several orders of
magnitude lower.

ment with those obtained from Infer.NET, at a much lower
cost. Note that in this task only one message is passed to
the factor in each problem. Fig. 4c also indicates that KJIT
requires fewer oracle consultations as more problems are
seen.

5. Conclusions and future work
We have proposed a method for learning the mapping be-
tween incoming and outgoing messages to a factor in ex-
pectation propagation, which can be used in place of com-
putationally demanding Monte Carlo estimates of these up-
dates. Our operator has two main advantages: it can re-
liably evaluate the uncertainty of its prediction, so that it
only consults a more expensive oracle when it is uncertain,
and it can efficiently update its mapping online, so that it
learns from these additional consultations. Once trained,
the learned mapping performs as well as the oracle map-
ping, but at a far lower computational cost. This is in large
part due to a novel two-stage random feature representation
of the input messages. One topic of current research is hy-
perparameter selection: at present, these are learned on an
initial mini-batch of data, however a better option would be
to adapt them online as more data are seen.

Acknowledgement
WJ, AG, BL, and ZSz thank the Gatsby Charitable Foun-
dation for the financial support.

Just-In-Time Kernel Regression for Expectation Propagation

References
M. A. Alvarez, L. Rosasco, and N. D. Lawrence. Ker-

nels for vector-valued functions: a review. 2011. URL
http://arxiv.org/abs/1106.6251.

S. Barthelmé and N. Chopin. ABC-EP: Expectation prop-
agation for likelihood-free Bayesian computation. In
ICML, pages 289–296, 2011.

C. M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

A. Christmann and I. Steinwart. Universal kernels on non-
standard input spaces. In NIPS, pages 406–414, 2010.

S. M. A. Eslami, D. Tarlow, P. Kohli, and J. Winn. Just-In-
Time Learning for Fast and Flexible Inference. In NIPS,
pages 154–162, 2014.

N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and
J. Tenenbaum. Church: A language for generative mod-
els. In UAI, pages 220–229, 2008.

N. Heess, D. Tarlow, and J. Winn. Learning to pass expec-
tation propagation messages. In NIPS, pages 3219–3227.
2013.

Q. Le, T. Sarlós, and A. Smola. Fastfood - approximat-
ing kernel expansions in loglinear time. ICML, JMLR
W&CP, 28:244–252, 2013.

M. Lichman. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

T. Minka, J. Winn, J. Guiver, S. Webster, Y. Zaykov,
B. Yangel, A. Spengler, and J. Bronskill. Infer.NET
2.6, 2014. Microsoft Research Cambridge. http://
research.microsoft.com/infernet.

T. P. Minka. A Family of Algorithms for Approximate
Bayesian Inference. PhD thesis, Massachusetts In-
stitute of Technology, 2001. http://research.
microsoft.com/en-us/um/people/minka/
papers/ep/minka-thesis.pdf.

A. Rahimi and B. Recht. Random features for large-scale
kernel machines. In NIPS, pages 1177–1184, 2007.

C. E. Rasmussen and C. K. I. Williams. Gaussian Pro-
cesses for Machine Learning. MIT Press, Cambridge,
MA, 2006.

B. Schölkopf and A. J. Smola. Learning with kernels : sup-
port vector machines, regularization, optimization, and
beyond. Adaptive computation and machine learning.
MIT Press, 2002.

A. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert
space embedding for distributions. In ALT, pages 13–31,
2007.

Stan Development Team. Stan: A C++ library for prob-
ability and sampling, version 2.4, 2014. URL http:
//mc-stan.org/.

Z. Szabó, B. Sriperumbudur, B. Póczos, and A. Gretton.
Learning theory for distribution regression. Technical
report, Gatsby Unit, University College London, 2014.
(http://arxiv.org/abs/1411.2066).

D. Wingate, N. Goodman, A. Stuhlmueller, and J. Siskind.
Nonstandard interpretations of probabilistic programs
for efficient inference. In NIPS, pages 1152–1160, 2011.

Z. Yang, A. J. Smola, L. Song, and A. G. Wilson. Á la
carte - learning fast kernels. In AISTATS, 2015. http:
//arxiv.org/abs/1412.6493.

