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Abstract

Machine learning has witnessed tremendous success in
solving tasks depending on a single hyperparameter.
When considering simultaneously a finite number of
tasks, multi-task learning enables one to account for
the similarities of the tasks via appropriate regularizers.
A step further consists of learning a continuum of tasks
for various loss functions. A promising approach, called
Parametric Task Learning, has paved the way in the
continuum setting for affine models and piecewise-linear
loss functions. In this work, we introduce a novel ap-
proach called Infinite Task Learning: its goal is to learn
a function whose output is a function over the hyperpa-
rameter space. We leverage tools from operator-valued
kernels and the associated Vector-Valued Reproducing
Kernel Hilbert Space that provide an explicit control
over the role of the hyperparameters, and also allows
us to consider new type of constraints. We provide
generalization guarantees to the suggested scheme and
illustrate its efficiency in cost-sensitive classification,
quantile regression and density level set estimation.

Mots-clef: méthodes a noyaux, multi-task learning,
multi-output prediction.

1 Introduction

Several fundamental problems in machine learning and
statistics can be phrased as the minimization of a loss
function described by a hyperparameter. The hyperpa-
rameter might capture numerous aspects of the problem:
(i) the tolerance w.r.t. outliers as the e-insensitivity
in Support Vector Regression [VGS97|, (ii) importance
of smoothness or sparsity such as the weight of the

lo-norm in Tikhonov regularization [TA77], 1;-norm in
LASSO [Tib96|, or more general structured-sparsity
inducing norms [Bac+12|, (iii) Density Level-Set Es-
timation (DLSE), see for example one-class support
vector machines One-Class Support Vector Machine
(OCSVM, |Sch+00]), (iv) confidence as examplified by
Quantile Regression (QR, [KB78]), or (v) importance
of different decisions as implemented by Cost-Sensitive
Classification (CSC, |ZE01]).

In various cases including QR, CSC or DLSE, one is
interested in solving the parameterized task for several
hyperparameter values. Multi-Task Learning [EP04]
provides a principled way of benefiting from the re-
lationship between similar tasks while preserving lo-
cal properties of the algorithms: v-property in DLSE
|[GLM13| or quantile property in QR [Tak-+06]|.

A natural extension from the traditional multi-task
setting is to provide a prediction tool being able to
deal with any value of the hyperparameter. In their
seminal work, [Tak+13] extended multi-task learning by
considering an infinite number of parametrized tasks in
a framework called Parametric Task Learning (PTL).
Assuming that the loss is piecewise affine in the hy-
perparameter, the authors are able to get the whole
solution path through parametric programming, relying
on techniques developed by Hastie et al. [Has+04].

In this paper, we relax the affine model assumption on
the tasks as well as the piecewise-linear assumption on
the loss, and take a different angle. We propose Infinite
Task Learning (ITL) within the framework of function-
valued function learning to handle a continuum number
of parameterized tasks. For that purpose we leverage
tools from operator-valued kernels and the associated
Vector-Valued Reproducing Kernel Hilbert Space (vv-



RKHS, [Ped57]). The idea is that the output is a
function on the hyperparameters —modelled as scalar-
valued Reproducing Kernel Hilbert Space (RKHS)—,
which provides an explicit control over the role of the
hyperparameters, and also enables us to consider new
type of constraints. In the studied framework each task
is described by a (scalar-valued) RKHS over the input
space which is capable of dealing with nonlinearities.

The resulting ITL formulation relying on vv-RKHS

specifically encompasses existing multi-task approaches

including joint quantile regression [SFd16| or multi-task
variants of density level set estimation |[GLM13| by
encoding a continuum of tasks.

Our contributions can be summarized as follows:

e We propose ITL, a novel vv-RKHS-based scheme
to learn a continuum of tasks parametrized by a
hyperparameter and design new regularizers.

e We prove excess risk bounds on ITL and illustrate its
efficiency in quantile regression, cost-sensitive classi-
fication, and density level set estimation.

The paper is structured as follows. The ITL problem

is defined in Section Pl In Section Bl we detail how the

resulting learning problem can be tackled in vv-RKHSs.

Excess risk bounds is the focus of Section @l Numerical

results are presented in Section [f] Conclusions are

drawn in Section [6l

2 From parameterized to infinite
task learning

After introducing a few notations, we gradually define
our goal by moving from single parameterized tasks
(Section [2.1)) to ITL (Section [2.3)) through multi-task

learning (Section [2.2).

Notations: 1g is the indicator function of set S.
We use the 3 ™ shorthand for 3 ) 3 3%, xly=

max(x, 0) denotes positive part. F(X;Y) stands for
the set of X — Y functions. Let Z be Hilbert space
and L£(Z) be the space of Z — Z bounded linear
operators. Let K : X x X — £(Z) be an operator-
valued kernel, i.e. szﬂ(Zi,K(xi,xj)zj)Z > 0 for all
n € N* and x9,...,xq € X and z1,...,zy € Z and
K(x,z) = K(z,x)* for all x, z € X. K gives rise to
the Vector-Valued Reproducing Kernel Hilbert Spa-
ce Hx = span {K(,x)z| x€X, ze 2} C F(X; 2),
where span {-} denotes the closure of the linear span
of its argument. For futher details on vv-RKHS the
reader is referred to |Car+10].

2.1 Learning Parameterized Tasks

A supervised parametrized task is defined as follows.
Let (X,Y) € X x Y be a random variable with joint
distribution Px y which is assumed to be fixed but
unknown; we also assume that Y C R. We have access
to n independent identically distributed observations
called training samples: 8 := ((xi,yi))I; ~ P%T}. Let
O be the domain of hyperparameters, and vg: YxY — R
be a loss function associated to 8 € ©. Let H C
F(X; Y) denote our hypothesis class; throughout the
paper H is assumed to be a Hilbert space with inner
product (-, -)g¢. For a given 0, the goal is to estimate
the minimizer of the expected risk

R%(h) := Ex,y[ve (Y, h(X))] (1)

over H, using the training sample 8. This task can
be addressed by solving the regularized empirical risk
minimization problem

. po
Inin Rg(h) + Q(h),

(2)
where R(h) := £ 3 I vo(yi, h(xi)) is the empirical
risk and © : H{ — R is a regularizer. Below we give

three examples.

Quantile Regression: In this setting € (0, 1). For
a given hyperparameter 0, in Quantile Regression the
goal is to predict the B-quantile of the real-valued output
conditional distribution Py|x. The task can be tackled
using the pinball loss [KB78| defined in Eq.

vo(y,h(x)) = 16 — Lz_(y — h(x))lly — h(x),
Q(h) = AhjZ, A>o.

3)

Cost-Sensitive Classification: Our next example
considers binary classification (Y = {—1,1}) where a
(possibly) different cost is associated with each class, as
it is often the case in medical diagnosis. The sign of
h € H yields the estimated class and in cost-sensitive
classification one takes

vo(y, h(x) = |30+ 1) — L1y (y) |1 —yh(¥)l,, (4)

Q) = 3IMl5, A>o.

The 6 € [—1, 1] hyperparameter captures the trade-
off between the importance of correctly classifying the
samples having —1 and +1 labels. When 9 is close to
—1, the obtained h focuses on classifying well class —1,
and vice-versa. Typically, it is desirable for a physician
to choose a posteriori the value of the hyperparameter
at which he wants to predict. Since this cost can rarely
be considered to be fixed, this motivates to learn one
model giving access to all hyperparameter values.



Density Level-Set Estimation: Examples of pa-
rameterized tasks can also be found in the unsupervised
setting. For instance in outlier detection, the goal is to
separate outliers from inliers. A classical technique to
tackle this task is OCSVM [Sch+00]. OCSVM has a
free parameter 0 € (0, 1], which can be proven to be an
upper bound on the fraction of outliers. When using
a Gaussian kernel with a bandwidth tending towards
zero, OCSVM consistently estimates density level sets
[VVO06|. This unsupervised learning problem can be
empirically described by the minimization of a regular-
ized empirical risk R (h,t) + Q(h), solved jointly over
he H and t € R with
vo(t,h(x)) = ~t + glt—h(o)l,, Q) =

2
‘+) %HhH‘}C

2.2 Solving a Finite Number of Tasks
as Multi-Task Learning

In all the aforementioned problems, one is rarely inter-
ested in the choice of a single hyperparameter value
(8) and associated risk (R$), but rather in the joint
solution of multiple tasks. The naive approach of solv-
ing the different tasks independently can easily lead
to inconsistencies. A principled way of solving many
parameterized tasks has been cast as a MTL problem
[EMPO5] which takes into account the similarities be-
tween tasks and helps providing consistent solutions.
For example it is possible to encode the similarities of
the different tasks in MTL through an explicit con-
straint function [Cil+17]. In the current work, the
similarity between tasks is designed in an implicit way
through the use of a kernel on the hyperparameters.
Moreover, in contrast to MTL, in our case the input
space and the training samples are the same for each
task; a task is specified by a value of the hyperparame-
ter. This setting is sometimes refered to as multi-output
learning |[ARL12].

Formally, assume that we have p tasks described by
parameters (Gj)}o:l. The idea of multi-task learning is

to minimize the sum of the local loss functions jo, ie.
. P 0;
arg}rlmn ijl Rg’(hy) + Q(h),

where the individual tasks are modelled by the real-
valued h; functions, the overall RP-valued model is the
vector-valued function h:x — (hy(x),...,hp(x)), and
Q is a regularization term encoding similarities between
tasks.

It is instructive to consider two concrete examples:
e In joint quantile regression one can use the regularizer

to encourage that the predicted conditional quantile

estimates for two similar quantile values are similar.
This idea forms the basis of the approach proposed
by Sangnier et al. [SFd16] who formulates the joint
quantile regression problem in a vector-valued Re-
producing Kernel Hilbert Space with an appropriate
decomposable kernel that encodes the links between
the tasks. The obtained solution shows less quantile
curve crossings compared to estimators not exploiting
the dependencies of the tasks as well as an improved
accuracy.

e A multi-task version of DLSE has recently been
presented by Glazer et al. [GLM13| with the goal
of obtaining nested density level sets as 0 grows.
Similarly to joint quantile regression, it is crucial to
take into account the similarities of the tasks in the
joint model to efficiently solve this problem.

2.3 Towards Infinite Task Learning

In the following, we propose a novel framework called
Infinite Task Learning in which we learn a function-
valued function h € F(X; F(0; Y)). Our goal is to be
able to handle new tasks after the learning phase and
thus, not to be limited to given predefined values of the
hyperparameter. Regarding this goal, our framework
generalizes the Parametric Task Learning approach
introduced by Takeuchi et al. [Tak+13|, by allowing
a wider class of models and relaxing the hypothesis
of piece-wise linearity of the loss function. Moreover
a nice byproduct of this vv-RKHS based approach is
that one can benefit from the functional point of view,
design new regularizers and impose various constraints
on the whole continuum of tasks, e. g.,

e The continuity of the 6 +— h(x)(0) function is a
natural desirable property: for a given input x, the
predictions on similar tasks should also be similar.

e Another example is to impose a shape constraint in
QR: the conditional quantile should be increasing
w.r.t. the hyperparameter 8. This requirement
can be imposed through the functional view of the
problem.

e In DLSE, to get nested level sets, one would want
that for all x € X, the decision function 6 +—
Ig, (h(x)(8) —t(0)) changes its sign only once.

To keep the presentation simple, in the sequel we are

going to focus on ITL in the supervised setting; unsu-

pervised tasks can be handled similarly.

Assume that h belongs to some space H C
F(X; F(©;Y)) and introduce an integrated loss func-



tion

Vi heo) = [ v@u ) @)du(®), )
where the local loss v:© x Y x Y — R denotes vg seen
as a function of three variables including the hyperpa-
rameter and | is a probability measure on © which
encodes the importance of the prediction at different
hyperparameter values. Without prior information and
for compact ©, one may consider pu to be uniform. The
true risk reads then

R(h) := Ex,y [V(Y,h(X))]. (6)

Intuitively, minimizing the expectation of the integral
over 0 in a rich enough space corresponds to search-
ing for a pointwise minimizer x — h*(x)(0) of the
parametrized tasks introduced in Eq. with, for in-
stance, the implicit space constraint that 6 — h*(x)(0)
is a continuous function for each input x. We show in
Proposition that this is precisely the case in QR:

Proposition 2.1. Let X,Y be two random variables
respectively taking values in X and R, and q: X —
F([0,1],R) the associated conditional quantile func-
tion. Let w be a positive measure on [0,1] such
that [ Eve (Y,q(X)(8))]du(8) < oco. Then Vh €
F (X F([0, 115 R))

R(h) —R(q) = 0,
where R is the risk defined in Eq. ,

. Interestingly, the empirical counterpart of the true
risk minimization can now be considered with a much
richer family of penalty terms:

1 n

minRs (h) +Q(h), Rs(h) = —

min S Vi hn).

(7)

i=1

Here, 2(h) can be a weighted sum of various penalties
e imposed directly on (6,x) — h(x)(0), or

e integrated constraints on either 6 — h(x)(0) or x —
h(x)(0) such as

J m(h(x)(-))dP(x)orj 0, (h(-)(0))du(60)
xX (€]

which allow the property enforced by €7 or s to
hold pointwise on X or © respectively.
It is worthwhile to see a concrete example before turning
to the numerical solution (Section : in quantile regres-
sion, the monotonicity assumption of the 6 — h(x)(0)
function can be encoded by choosing )1 as

mm:MJ

(C]

|—(01)(0)l . du(6).

Many different models (H) could be applied to solve this
problem. In our work we consider Reproducing Kernel
Hilbert Spaces as they offer a simple and principled
way to define regularizers by the appropriate choice of
kernels and exhibit a significant flexibility.

3 Solving the problem in RKHSs

This section is dedicated to solving the I'TL problem de-
fined in Eq. In Sectionwe focus on the objective
(\7) The applied vv-RKHS model family is detailed
in Section with various penalty examples followed
by representer theorems, giving rise to computational
tractability.

3.1 Sampled Empirical Risk

In practice solving Eq. can be rather challenging
due to the integral over 0. One might consider different
numerical integration techniques to handle this issue.
We focus here on Quasi Monte Carlo (QMC) methods
as they allow (i) efficient optimization over vv-RKHSs
which we will use for modelling H (Proposition ,
and (ii) enable us to derive generalization guarantees
(Proposition [£.1]). Indeed, let

Viy,h() =) " (®)

be the QMC approximation of Eq. Let w; =
m'F1(65), and (05);; be a sequence with values in

wyv(05,y,h(x)(0))

[0,1]¢ such as the Sobol or Halton sequence where w
is assumed to be absolutely continuous w.r.t. the
Lebesgue measure and F is the associated cdf. Using
this notation and the training samples 8 = ((xi,Yi))1,
the empirical risk takes the form

Rs (h) == 1

—2 V(yi, h(xi))

(9)
and the problem to solve is

min Rg(h) + Q(h).

heXH (10)

3.2 Hypothesis class (H)

Recall that H C F(X; F(O; Y)), in other words h(x)
is a © — Y function for all x € X. In this work we
assume that the © — Y mapping can be described
by an RKHS Xy, associated to a kg:©® x © — R
scalar-valued kernel defined on the hyperparameters.
Let ky: X x X — R be a scalar-valued kernel on the
input space. The x — (hyperparameter — output)



relation, i.e. h: X — JHy is then modelled by the Vec-
tor-Valued Reproducing Kernel Hilbert Space Hx =
span { K(-,x)f| x € X, f & Hy, }, where the operator-
valued kernel K is defined as K(x,z) = kx(x,z)I, and
1= Ig-(k(_) is the identity operator on JHy, .

This so-called decomposable Operator-Valued Ker-
nel has several benefits and gives rise to a function
space with a well-known structure. One can consider
elements h € H{x as mappings from X to Hy,, and also
as functions from (X x ©) to R. It is indeed known that
there is an isometry between Hy and Hy, ® Hy,, the
RKHS associated to the product kernel ky ® kg. The
equivalence between these views allows a great flexibil-
ity and enables one to follow a functional point of view
(to analyse statistical aspects) or to leverage the tensor
product point of view (to design new kind of penal-
ization schemes). Below we detail various regularizers
before focusing on the representer theorems.

e Ridge Penalty: For QR and CSC, a natural regu-
larization is the squared vv-RKHS norm

QRIDGE (h) _

3IMl5e., A >0 (11)

This choice is amenable to excess risk analysis (see
Proposition . It can be also seen as the counter-
part of the classical (multi-task regularization term
introduced by Sangnier et al. [SFd16|, compatible
with an infinite number of tasks. [|-]|5,, acts by con-
straining the solution to a ball of a finite radius within
the vv-RKHS, whose shape is controlled by both ke
and kg.

e [%l.penalty: For DLSE, it is more adequate to
apply an L>!1-RKHS mixed regularizer:

QPFE(h) = J Ih(-)(®) 3¢, dr(8) (12)
which is an example of a O-integrated penalty. This
Q choice allows the preservation of the 8-property
(see Fig. [2)), i.e. that the proportion of the outliers
is 0.

e Shape Constraints: Taking the example of QR it
is advantageous to ensure the monotonicity of the es-
timated quantile function Let 0gh denotes the deriva-

tive of h(x)(6) with respect to 8. Then one should
solve

argmin Rg(h) + QMPGE(h)

heHk
s.t. V(x,0) € X x 0, (dch)(x)(0) > 0.
However, the functional constraint prevents a

tractable optimization scheme. To mitigate this bot-
tleneck, we penalize if the derivative of h w.r.t. 0

is negative:

Qe () 1= Aue L J@\f(a@h) (x)(8)], dr(8)aP(x). (13)

When P := Px this penalization can rely on the same
anchors and weights as the ones used to approximate
the integrated loss function:

~ n,m
Qne(h) = Ane _ Wi|_(axh)(xi>(ei)|+' (14)
Thus, one can modify the overall regularizer in QR

to be

Q(h) := QMPEE(R) £ O, (h). (15)

3.3 Representer Theorems

Apart from the flexibility of regularizer design, the other
advantage of applying vv-RKHS as hypothesis class is
that it gives rise to finite-dimensional representation of
the ITL solution under mild conditions. The representer
theorem Proposition applies to CSC when A =0
and to QR when A, > 0.

Proposition 3.1 (Representer). Assume that for V0 €
O,vg is a proper lower semicontinuous convex function
with respect to its second argument. Then

argmin Rg(h) +Q(h), A >0

heHk

wzth Q(h) defined as in Eq. has a unique solution
, and 3 (cxu)” 1 (Bu)l) | € R2™™ such that Vx €
DC

= ka(%,)@L <Z (Xuke + E’l)(a k9)( 9; )> .

Sketch of the proof. First, we prove that the function
to minimize is coercive, convex, lower semicontinuous,
hence it has a unique minimum. Then Hy is decom-
posed into two orthogonal subspaces and we use the
reproducing property to get the finite representation.

For DLSE, we similarly get a representer theorem
with the following modelling choice. Let ky, : ©x0 — R
be a scalar-valued kernel (possibly different from ko),
Hy, the associated RKHS and t € Hy,. Assume
also that © C [e, 1] where € > 0F] Then, learning a
continuum of level sets boils down to the minimization
problem

argmin  Rg(h,t) + Q(h,t), A >0, (16)
hEF i t€H
*We choose © C [e, 1], € > 0 rather than © C [0, 1] because

the loss might not be integrable on [0, 1].



where G(h,t) = 3 7% wi[R()(85) 3,
Rs(h,t) = & T3 52 (165) — h(x)(8))], — U(8y)).

Proposition 3.2 (Representer). Assume that ke is
bounded: supgcg ko(6,0) < +oo. Then the minimiza-
tion problem described in Fq. has a unique so-
lution (h*,t*) and there exist (ocij)z}:l € R™™ qand
([3]-)].“;1 € R™ such that for V(x,0) € X x [e, 1],

2
+ 30l -

R)0) =Y T aiska(x,xi)ke (8, 8),

:n,,_
Z].:l Biko(6,05).

Sketch of the proof. First we show that the infimum
exists, and that it must be attained in some subspace of
Hx x Hy, over which the objective function is coercive.
By the reproducing property, we get the claimed finite
decomposition.

t(8) =

Remarks:

e Models with bias: it can be advantageous to add a
bias to the model, which is here a function of the
hyperparameter 0: h(x)(0) = f(x)(0) +b(0), f € Hy,
b € Hy,, where kp : © X © = R is a scalar-valued
kernel. This can be the case for example if the kernel
on the hyperparameters is the constant kernel, i.e.
ke(6,0') =1 (V0,0 € ©), hence the model f(x)(0)
would not depend on 6. An analogous statement to
Proposition [3.1] still holds for the biased model if one
adds a regularization )\beHg{ , Ap > 0 to the risk.

e Relation to JQR: In oo-QR, by choosing kg to
be the Gaussian kernel, ky(x,z) = Lix}(z), n =
L ZJ 1 80;, where 8¢ is the Dirac measure concen-
trated on 6 one gets back Sangnier et al. [SFd16|’s
Joint Quantile Regression (JQR) framework as a
special case of our approach. In contrast to the JQR,
however, in co-QR one can predict the quantile value
at any 0 € (0,1), even outside the (6;);", used for
learning.

e Relation to -OCSVM: In DLSE, by choosing
ke(0,0’) =1 (for all 0,0’ € O©) to be the constant
kernel, kb(e,el) = ]].{9}(9 ) L= L Z’ 159], our
approach specializes to -OCSVM |GLM13|

o Relation to Kadri et al. [Kad+16]: Note that Opera-
tor-Valued Kernels for functional outputs have also
been used in [Kad+16|, under the form of integral
operators acting on L? spaces. Both kernels give rise
to the same space of functions; the benefit of our ap-
proach being to provide an ezxact finite representation
of the solution (see Proposition |3.1)).

e Efficiency of the decomposable kernel: this kernel
choice allows to rewrite the expansions in Proposi-
tions[3.1]and [3:2]as a Kronecker products and the com-
plexity of the prediction of n/ points for m’ quantile
becomes O(m’mn 4+ n’/nm) instead of O(m’mn’n).

4 Excess Risk Bounds

Below we provide a generalization error analysis to the
solution of Eq. for QR and CSC (with Ridge reg-
ularization and without shape constraints) by stability
argument [BE02|, extending the work of Audiffren et
al. [AK13| to Infinite-Task Learning. The proposition
instantiates the guarantee for the QMC scheme.

Proposition 4.1 (Generalization). Let h* € Hy be
the solution of Eq. for the QR or CSC problem

with QMC approzimation. Under mild conditions on
the kernels kx, ke and Px y, one has
. 1 log(m)>
h*)+0 — | +0 . 17
wr+on () o () o7
Sketch of the proof. The error resulting from sam-

pling Px v and the inexact integration is respectively
bounded by B-stability [Kad+16] and QMC resultsﬂ

R(h*) < R

(n,m) Trade-off: The proposition reveals the inter-
play between the two approximations, n (the number of
training samples) and m (the number of locations taken
in the integral approximation), and allows to identify
the regime in A = A(n, m) driving the excess risk to zero.
Indeed by choosing m = /n and discarding logarithmic
factors for simplicity, A > n~! is sufficient. The mild
assumptions imposed are: boundedness on both kernels
and the random variable Y, as well as some smoothness
of the kernels.

5 Numerical Examples

In this section we provide numerical examples illustrat-

ing the efficiency of the proposed ITL approachﬁ We

used the following datasets in our experiments:

e Quantile Regression: we used (i) a sine synthetic
benchmark [SFA16]: a sine curve at 1Hz modulated by
a sine envelope at 1/3Hz and mean 1, distorted with
a Gaussian noise of mean 0 and a linearly decreasing
standard deviation from 1.2 at x = 0 to 0.2 at x = 1.5.

TThe QMC approximation may involve the Sobol sequence
with discrepancy m~!log(m)* (s = dim(©)).

fThe code is https://bitbucket.org/
RomainBrault/itl,

available at


https://bitbucket.org/RomainBrault/itl
https://bitbucket.org/RomainBrault/itl

Table 1: Quantile Regression on 20 UCI datasets. Reported: 100xvalue of the pinball loss, 100 crossing loss
(smaller is better). p.-val.: outcome of the Mann-Whitney-Wilcoxon test of JQR vs. co-QR and Independent vs.
oo-QR. Boldface: significant values w.r.t. oco-QR.

DATASET JQR IND-QR 00-QR

(PINBALL P.-VAL.) (cross P.-VAL.) (PINBALL P.-VAL.) (cross P.-VAL.) PINBALL CROSS
COBARORE 159+24 9-10001 0.1+0.4 6-10091 150+21 2.-10091 0.3+0.8 7.-10701 165+36 2.0+6.0
ENCEL 175 +555 6-10791 0.0+0.2 1.-10700 63+53 8.10701 4.0+12.8 8-10001 4746 0.040.1
BostonHousine  49+4 8.10791 o0.7+0.7 2.10001 49+4 8.10001 13+12 1.10005 4944 0.34+0.5
CAUTION 88+17 6-10001 0.1+0.2 6-10091 89419 4.10091 03+04 2.10004 85+16 0.0+0.1
FTCOLLINSSNow 154416 8-10791 0.0+0.0 6-10701 1554+13 9.10701 o0.2+0.9 8-10701 156+17 0.14+0.6
HIGHWAY 103+19 4-10701 o0.8+1.4 2.10792 o994+20 9.-10091 62441 1.10707 105+36 0.1+0.4
HEIGHTS 12743 1.-10700 0.04+0.0 1-10790 127+3 9.10701 o0.0+0.0 1-10t00 12743 0.0+0.0
SNIFFER 43+6 8-10091 0.14+0.3 2:10001 4445 7.10001 14412 6-10007 4447 o0.140.1
SNOWGEESE 554+20 7-10001 0.3+0.8 3.10091 s534+18 6.-10791 o0.44+1.0 5.10702 57+20 0.24+0.6
UFC 81+5 6-10091 o0.04+0.0 4-10094 8245 7.10001 10414 2.10094 8244 0.140.3
BicMAc2003 804+21 7-10001 14421 4.10794 74424 9.10092 994+1.1 7.10005 84+24 0.240.4
UN3 98+9 8.1091 0.0+0.0 110001 9949 1.10790 12410 1.10795 99410 0.1+0.4
BIRTHWT 141413 1-1019 o0.0+0.0 6-10701 1404+12 9-100091 o0.1+0.2 7-10792 141+12 0.040.0
CRABS 141 4.1079% 0.0+0.0 8100091 11+1 2.10704 o90+o00 2-10005 1343 0.040.0
G AGURINE 61+7 4-10791 0.0+0.1 3.-10003 6247 5.10701 o.140.2 4.1009 62+7 0.0+0.0
GEYSER 105+7 9-10791 0.14+0.3 9.-10001 105+6 9.10701 o0.2+0.3 6-10791 104+6 0.1+0.2
GILGAIS 51+6 5-10791 0.14+0.1 1-10001 4946 6-10701 11407 2.1079 49+7 0.3+0.3
TOPO 69+18 1-101T90 o0.1+0.5 1.10t00 71420 1.10700 17414 3.10097 70+17 0.0+0.0
MCYCLE 66+9 9.-10791 0.24+0.3 7-10703 66+8 9.10001 03+03 7.10796 65+9 0.040.1
cpuUs T+4 2.10794 o.7+1.0 5.1004 7+5 3-10004 12+08 6-10008 16+10 0.040.0

Non-crossing: A, = 10.0 Crossing: \pe =0 Lo

A\

0.8

0.6
)

0.4

0.2

0.0

X ' ' ' ox

Figure 1: Impact of crossing penalty on toy data. Left plot: strong non-crossing penalty (A,. = 10). Right
plot: no non-crossing penalty (A = 0). The plots show 100 quantiles of the continuum learned, linearly spaced
between 0 (blue) and 1 (red). Notice that the non-crossing penalty does not provide crossings to occur in the
regions where there is no points to enforce the penalty (e.g. x € [0.13, 0.35]). This phenomenon is alleviated by
the regularity of the model.



(ii) 20 standard regression datasets from UCI. The
number of samples varied between 38 (CobarOre) and
1375 (Height). The observations were standardised to
have unit variance and zero mean for each attribute.

e Density Level-Set Estimation: The Wilt database
from the UCI repository with 4839 samples and 5
attributes, and the Spambase UCI dataset with 4601
samples and 57 attributes served as benchmarks.

Note on Optimization: There are several ways to
solve the non-smooth optimization problems associated
to the QR, DLSE and CSC tasks. One could pro-
ceed for example by duality—as it was done in JQR
Sangnier et al. [SFd16]—, or apply sub-gradient descent
techniques (which often converge quite slowly). In or-
der to allow unified treatment and efficient solution
in our experiments we used the L-BFGS-B [Zhu+97|
optimization scheme which is widely popular in large-
scale learning, with non-smooth extensions [KW17].
The technique requires only evaluation of objective
function along with its gradient, which can be com-
puted automatically using reverse mode automatic dif-
ferentiation (as in Abadi et al. [Aba+16]). To benefit
from from the available fast smooth implementations
[JOP+01], we applied an infimal convolution on the
non-differentiable terms of the objective. Under the
assumtion that m = O(y/n) (see Proposition , the
complexity per L-BFGS-B iteration is O(n?,/n).

QR: The efficiency of the non-crossing penalty is il-
lustrated in Fig. [1] on the synthetic sine wave dataset
described in Section [5| where n = 40 and m = 20 points
have been generated. Many crossings are visible on the
right plot, while they are almost not noticible on the
left plot, using the non-crossing penalty. Concerning
our real-world examples, to study the efficiency of the
proposed scheme in quantile regression the following
experimental protocol was applied. Each dataset (Sec-
tion |5)) was splitted randomly into a training set (70%)
and a test set (30%). We optimized the hyperparam-
eters by minimizing a 5-folds cross validation with a
Bayesian optimizerﬁ Once the hyperparameters were
obtained, a new regressor was learned on the whole
training set using the optimized hyperparameters. We
report the value of the pinball loss and the crossing
loss on the test set for three methods: our technique is
called co-QR, we refer to Sangnier et al. [SFd16]’s ap-
proach as JQR, and independent learning (abbreviated
as IND-QR) represents a further baseline.

We repeated 20 simulations (different random
training-test splits); the results are also compared using

a Mann-Whitney-Wilcoxon test. A summary is pro-
vided in Table [I] Notice that while JQR is tailored
to predict finite many quantiles, our co-QR method
estimates the whole quantile function hence solves a
more challenging task. Despite the more difficult prob-
lem solved, as Table [I| suggest that the performance in
terms of pinball loss of co-QR . is comparable to that
of the state-of-the-art JQR on all the twenty studied
benchmarks, except for the ‘crabs’ and ‘cpus’ datasets
(p--val. < 0.25%). In addition, when considering the
non-crossing penalty one can observe that co-QR. out-
performs the IND-QR baseline on eleven datasets (p.-
val. < 0.25%) and JQR on two datasets. This il-
lustrates the efficiency of the constraint based on the
continuum scheme.

CSC: To illustrate the advantage of (infinite) joint
learning we used two synthetic datasets CIRCLES and
Two-MooNs and the UCI Iris dataset. We chose
kx to be a Gaussian kernel with bandwidth oy =
(2yx)1/?) the median of the Euclidean pairwise dis-
tances of the input points [JDH99|. ke is also a Gaus-
sian kernel with bandwidth yg = 5. We used m = 20
for all datasets. As a baseline we trained indepen-
dently 3 Cost-Sensitive Classification classifiers with
0 € {—0.9,0,0.9}. We repeated 50 times a random
50 — 50% train-test split of the dataset and report the
average test error and standard deviation (in terms of
sensitivity and specificity)

Our results are illustrated in Table 2] For 6 = —0.9,
both independent and joint learners give the desired
100% specificity; the joint Cost-Sensitive Classification
scheme however has significantly higher sensitivity value
(15% vs 0%) on the dataset CIRCLES. Similar conclusion
holds for the 8 = +0.9 extreme: the ideal sensitivity
is reached by both techniques, but the joint learning
scheme performs better in terms of specificity (0% vs
12%) on the dataset CIRCLES.

DLSE: To assess the quality of the estimated model
by 0co-OCSVM, we illustrate the 8-property [Sch+00]:
the proportion of inliers has to be approximately 1 — 0
(V0 € (0,1)). For the studied datasets (Wilt, Spambase)
we used the raw inputs without applying any prepro-
cessing. Our input kernel was the exponentiated x? ker-

nel kx(x,z) := exp (—yx Zgzl(xk —zi)?/(xx + Zk))
with bandwidth yyx = 0.25. A Gauss-Legendre quadra-
ture rule provided the integral approximation in Eq.

$We used a Gaussian Process model and minimized the Ex-
pected improvement. The optimizer was initialized using 27
samples from a Sobol sequence and ran for 50 iterations.



Table 2: 0co-CSC vs Independent (IND)-CSC. Higher is better.

DATASET METHOD 0=-09 0=0 0=+0.9

SENSITIVITY ~ SPECIFICITY  SENSITIVITY  SPECIFICITY  SENSITIVITY  SPEGIFICITY
Two-MOONS IND 0.3+0.05 0.994+0.01 0.834+0.03 0.86+0.03 0.994+0 0.324+0.06
c0-CSC 0.324+0.05 0.994+0.01 0.844+0.03 0.87+0.03 1+0 0.36 £0.04

CIRCLES IND 0+0 1+0 0.82+0.02 0.84+0.03 1+0 0+0
c0-CSC 0.15+0.05 1+0 0.82+0.02 0.84+0.03 1+0 0.124+0.05
RIS IND 0.88+0.08 0.94+0.06 0.94+£0.05 0.92+0.06 0.97+0.05 0.87+0.06
c0-CSC 0.891+0.08 0.944+0.05 0.944+0.06 0.924+0.05 0.97+0.04 0.90=£0.05
Toy IND 0.514+0.06 0.98+0.01 0.83+£0.03 0.86+0.03 0.97+0.01 0.49+0.07
c0-CSC 0.63+0.04 0.964+0.01 0.834+0.03 0.85+0.03 0.95+0.02 0.61=+0.04

with m 100 samples. We chose the Gaussian
kernel for kg; its bandwidth parameter yo was the
0.2—quantile of the pairwise Euclidean distances be-
tween the 0;’s obtained via the quadrature rule. The
margin (bias) kernel was ky = kg. As it can be seen
in Fig. 2| the 6-property holds for the estimate which
illustrates the efficiency of the proposed continuum
approach for density level-set estimation.

Dataset: wilt Dataset: spambase

—— Train
Test
Oracle Train

—— Train
Test
Oracle Train

Proportion of inliers
#

0.0

Figure 2: Density Level-Set Estimation: the 0-property
is approximately satisfied.

6 Conclusion

In this work we proposed Infinite Task Learning, a
novel nonparametric framework aiming at jointly solv-
ing parametrized tasks for a continuum of hyperparame-
ters. We provided excess risk guarantees for the studied
ITL scheme, and demonstrated its practical efficiency
and flexibility in various tasks including cost-sensitive
classification, quantile regression and density level set
estimation.
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