
Infinite Task Learning in RKHSs

Romain Brault1† Alex Lambert2† Zoltán Szabó3 Maxime Sangnier4 Florence d’Alché-Buc2

1CentraleSupélec; 2Télécom ParisTech, IP Paris; 3École Polytechnique, IP Paris; 4Sorbonne Université.

Abstract

Machine learning has witnessed tremendous
success in solving tasks depending on a sin-
gle hyperparameter. When considering si-
multaneously a finite number of tasks, multi-
task learning enables one to account for the
similarities of the tasks via appropriate reg-
ularizers. A step further consists of learning
a continuum of tasks for various loss func-
tions. A promising approach, called Para-
metric Task Learning, has paved the way
in the continuum setting for affine models
and piecewise-linear loss functions. In this
work, we introduce a novel approach called
Infinite Task Learning: its goal is to learn
a function whose output is a function over
the hyperparameter space. We leverage tools
from operator-valued kernels and the associ-
ated Vector-Valued Reproducing Kernel Hil-
bert Space that provide an explicit control
over the role of the hyperparameters, and
also allows us to consider new type of con-
straints. We provide generalization guaran-
tees to the suggested scheme and illustrate
its efficiency in cost-sensitive classification,
quantile regression and density level set es-
timation.

1 INTRODUCTION

Several fundamental problems in machine learning
and statistics can be phrased as the minimization
of a loss function described by a hyperparameter.
The hyperparameter might capture numerous aspects
of the problem: (i) the tolerance w. r. t. outliers
as the ϵ-insensitivity in Support Vector Regression
(Vapnik et al., 1997), (ii) importance of smoothness
or sparsity such as the weight of the l2-norm in
Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

Tikhonov regularization (Tikhonov et al., 1977), l1-
norm in LASSO (Tibshirani, 1996), or more general
structured-sparsity inducing norms (Bach et al., 2012),
(iii) Density Level-Set Estimation (DLSE), see for ex-
ample one-class support vector machines One-Class
Support Vector Machine (OCSVM, Schölkopf et al.,
2000), (iv) confidence as examplified by Quantile Re-
gression (QR, Koenker et al., 1978), or (v) importance
of different decisions as implemented by Cost-Sensitive
Classification (CSC, Zadrozny et al., 2001).

In various cases including QR, CSC or DLSE, one
is interested in solving the parameterized task for sev-
eral hyperparameter values. Multi-Task Learning (Ev-
geniou and Pontil, 2004) provides a principled way of
benefiting from the relationship between similar tasks
while preserving local properties of the algorithms: ν-
property in DLSE (Glazer et al., 2013) or quantile
property in QR (Takeuchi, Le, et al., 2006).

A natural extension from the traditional multi-task set-
ting is to provide a prediction tool being able to deal
with any value of the hyperparameter. In their sem-
inal work, (Takeuchi, Hongo, et al., 2013) extended
multi-task learning by considering an infinite number
of parametrized tasks in a framework called Paramet-
ric Task Learning (PTL). Assuming that the loss is
piecewise affine in the hyperparameter, the authors are
able to get the whole solution path through paramet-
ric programming, relying on techniques developed by
Hastie et al. (2004).1

In this paper, we relax the affine model assumption
on the tasks as well as the piecewise-linear assumption
on the loss, and take a different angle. We propose
Infinite Task Learning (ITL) within the framework of
function-valued function learning to handle a contin-
uum number of parameterized tasks. For that purpose
we leverage tools from operator-valued kernels and the
associated Vector-Valued Reproducing Kernel Hilbert
Space (vv-RKHS, Pedrick, 1957). The idea is that

†Both authors contributed equally to this work.
1Alternative optimization techniques to deal with

countable or continuous hyperparameter spaces could in-
clude semi-infinite (Stein, 2012) or bi-level programming
(Wen et al., 1991).

Infinite Task Learning in RKHSs

the output is a function on the hyperparameters —
modelled as scalar-valued Reproducing Kernel Hilbert
Space (RKHS)—, which provides an explicit control
over the role of the hyperparameters, and also enables
us to consider new type of constraints. In the studied
framework each task is described by a (scalar-valued)
RKHS over the input space which is capable of deal-
ing with nonlinearities. The resulting ITL formulation
relying on vv-RKHS specifically encompasses existing
multi-task approaches including joint quantile regres-
sion (Sangnier et al., 2016) or multi-task variants of
density level set estimation (Glazer et al., 2013) by
encoding a continuum of tasks.

Our contributions can be summarized as follows:

• We propose ITL, a novel vv-RKHS-based scheme to
learn a continuum of tasks parametrized by a hyper-
parameter and design new regularizers.

• We prove excess risk bounds on ITL and illustrate its
efficiency in quantile regression, cost-sensitive classi-
fication, and density level set estimation.

The paper is structured as follows. The ITL problem is
defined in Section 2. In Section 3 we detail how the re-
sulting learning problem can be tackled in vv-RKHSs.
Excess risk bounds is the focus of Section 4. Numeri-
cal results are presented in Section 5. Conclusions are
drawn in Section 6. Details of proofs are given in the
supplement.

2 FROM PARAMETERIZED TO
INFINITE TASK LEARNING

After introducing a few notations, we gradually define
our goal by moving from single parameterized tasks
(Section 2.1) to ITL (Section 2.3) through multi-task
learning (Section 2.2).

Notations: S is the indicator function of set S.
We use the

∑n,m
i,j=1 shorthand for

∑n
i=1

∑m
j=1. |x|+=

max(x, 0) denotes positive part. F (X; Y) stands for
the set of X → Y functions. Let Z be Hilbert space
and L(Z) be the space of Z → Z bounded linear
operators. Let K : X × X → L(Z) be an operator-
valued kernel, i. e.

∑n
i,j=1⟨zi, K(xi, xj)zj⟩Z ! 0 for

all n ∈ N∗ and x1, . . . , xn ∈ X and z1, . . . , zn ∈ Z

and K(x, z) = K(z, x)∗ for all x, z ∈ X. K gives rise
to the Vector-Valued Reproducing Kernel Hilbert Spa-
ce HK = span { K(·, x)z | x ∈ X, z ∈ Z } ⊂ F (X; Z),
where span {·} denotes the closure of the linear span
of its argument. For futher details on vv-RKHS the
reader is referred to (Carmeli et al., 2010).

2.1 Learning Parameterized Tasks

A supervised parametrized task is defined as follows.
Let (X, Y) ∈ X × Y be a random variable with joint
distribution PX,Y which is assumed to be fixed but un-
known; we also assume that Y ⊂ R. We have access
to n independent identically distributed (i. i. d.) ob-
servations called training samples: S := ((xi, yi))n

i=1 ∼

P⊗n
X,Y . Let Θ be the domain of hyperparameters, and

vθ:Y × Y → R be a loss function associated to θ ∈ Θ.
Let H ⊂ F (X; Y) denote our hypothesis class; through-
out the paper H is assumed to be a Hilbert space with
inner product ⟨·, ·⟩H. For a given θ, the goal is to
estimate the minimizer of the expected risk

Rθ(h) := EX,Y [vθ(Y, h(X))] (1)

over H, using the training sample S. This task can
be addressed by solving the regularized empirical risk
minimization problem

min
h∈H

RθS(h) + Ω(h), (2)

where RθS(h) := 1
n

∑n
i=1 vθ(yi, h(xi)) is the empirical

risk and Ω : H → R is a regularizer. Below we give
three examples.

Quantile Regression: In this setting θ ∈ (0, 1).
For a given hyperparameter θ, in Quantile Regression
the goal is to predict the θ-quantile of the real-valued
output conditional distribution PY|X. The task can be
tackled using the pinball loss (Koenker et al., 1978)
defined in Eq. (3) and illustrated in Fig. S.3.

vθ(y, h(x)) = |θ− R−
(y − h(x))||y − h(x)|, (3)

Ω(h) = λ
2 ∥h∥2

H, λ > 0.

Cost-Sensitive Classification: Our next example
considers binary classification (Y = { −1, 1 }) where a
(possibly) different cost is associated with each class,
as it is often the case in medical diagnosis. The sign of
h ∈ H yields the estimated class and in cost-sensitive
classification one takes

vθ(y, h(x)) =
∣∣ 1
2 (θ+ 1) − { −1 }(y)

∣∣|1 − yh(x)|+, (4)
Ω(h) = λ

2 ∥h∥2
H, λ > 0.

The θ ∈ [−1, 1] hyperparameter captures the trade-
off between the importance of correctly classifying the
samples having −1 and +1 labels. When θ is close to
−1, the obtained h focuses on classifying well class −1,
and vice-versa. Typically, it is desirable for a physician
to choose a posteriori the value of the hyperparameter
at which he wants to predict. Since this cost can rarely
be considered to be fixed, this motivates to learn one
model giving access to all hyperparameter values.

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

Density Level-Set Estimation: Examples of pa-
rameterized tasks can also be found in the unsuper-
vised setting. For instance in outlier detection, the
goal is to separate outliers from inliers. A classical
technique to tackle this task is OCSVM (Schölkopf
et al., 2000). OCSVM has a free parameter θ ∈ (0, 1],
which can be proven to be an upper bound on the frac-
tion of outliers. When using a Gaussian kernel with
a bandwidth tending towards zero, OCSVM consis-
tently estimates density level sets (Vert et al., 2006).
This unsupervised learning problem can be empirically
described by the minimization of a regularized empiri-
cal risk RθS(h, t)+Ω(h), solved jointly over h ∈ H and
t ∈ R with

vθ(t, h(x)) = −t + 1
θ

|t − h(x)|+, Ω(h) = 1
2∥h∥2

H.

2.2 Solving a Finite Number of Tasks as
Multi-Task Learning

In all the aforementioned problems, one is rarely inter-
ested in the choice of a single hyperparameter value
(θ) and associated risk

(
RθS
)
, but rather in the joint

solution of multiple tasks. The naive approach of solv-
ing the different tasks independently can easily lead
to inconsistencies. A principled way of solving many
parameterized tasks has been cast as a MTL problem
(Evgeniou, Micchelli, et al., 2005) which takes into ac-
count the similarities between tasks and helps provid-
ing consistent solutions. For example it is possible to
encode the similarities of the different tasks in MTL
through an explicit constraint function (Ciliberto et
al., 2017). In the current work, the similarity between
tasks is designed in an implicit way through the use
of a kernel on the hyperparameters. Moreover, in con-
trast to MTL, in our case the input space and the
training samples are the same for each task; a task is
specified by a value of the hyperparameter. This set-
ting is sometimes refered to as multi-output learning
(Álvarez et al., 2012).

Formally, assume that we have p tasks described by
parameters (θj)p

j=1. The idea of multi-task learning
is to minimize the sum of the local loss functions R

θj

S ,
i. e.

arg min
h

∑p

j=1
R
θj

S (hj) + Ω(h),

where the individual tasks are modelled by the real-
valued hj functions, the overall Rp-valued model is
the vector-valued function h: x (→ (h1(x), . . . , hp(x)),
and Ω is a regularization term encoding similarities
between tasks.

It is instructive to consider two concrete examples:

• In joint quantile regression one can use the regu-
larizer to encourage that the predicted conditional

quantile estimates for two similar quantile values are
similar. This idea forms the basis of the approach
proposed by Sangnier et al. (2016) who formulates
the joint quantile regression problem in a vector-
valued Reproducing Kernel Hilbert Space with an
appropriate decomposable kernel that encodes the
links between the tasks. The obtained solution
shows less quantile curve crossings compared to esti-
mators not exploiting the dependencies of the tasks
as well as an improved accuracy.

• A multi-task version of DLSE has recently been pre-
sented by Glazer et al. (2013) with the goal of obtain-
ing nested density level sets as θ grows. Similarly to
joint quantile regression, it is crucial to take into ac-
count the similarities of the tasks in the joint model
to efficiently solve this problem.

2.3 Towards Infinite Task Learning

In the following, we propose a novel framework called
Infinite Task Learning in which we learn a function-
valued function h ∈ F (X; F (Θ; Y)). Our goal is to be
able to handle new tasks after the learning phase and
thus, not to be limited to given predefined values of the
hyperparameter. Regarding this goal, our framework
generalizes the Parametric Task Learning approach in-
troduced by Takeuchi, Hongo, et al. (2013), by allow-
ing a wider class of models and relaxing the hypothesis
of piece-wise linearity of the loss function. Moreover
a nice byproduct of this vv-RKHS based approach is
that one can benefit from the functional point of view,
design new regularizers and impose various constraints
on the whole continuum of tasks, e. g.,

• The continuity of the θ (→ h(x)(θ) function is a
natural desirable property: for a given input x, the
predictions on similar tasks should also be similar.

• Another example is to impose a shape constraint in
QR: the conditional quantile should be increasing
w. r. t. the hyperparameter θ. This requirement
can be imposed through the functional view of the
problem.

• In DLSE, to get nested level sets, one would want
that for all x ∈ X, the decision function θ (→

R+(h(x)(θ) − t(θ)) changes its sign only once.

To keep the presentation simple, in the sequel we are
going to focus on ITL in the supervised setting; unsu-
pervised tasks can be handled similarly.

Assume that h belongs to some space H ⊆
F (X; F (Θ; Y)) and introduce an integrated loss func-
tion

V(y, h(x)) :=
∫

Θ
v(θ, y, h(x)(θ))dµ(θ), (5)

Infinite Task Learning in RKHSs

where the local loss v: Θ × Y × Y → R denotes vθ seen
as a function of three variables including the hyperpa-
rameter and µ is a probability measure on Θ which en-
codes the importance of the prediction at different hy-
perparameter values. Without prior information and
for compact Θ, one may consider µ to be uniform. The
true risk reads then

R(h) := EX,Y [V(Y, h(X))] . (6)

Intuitively, minimizing the expectation of the integral
over θ in a rich enough space corresponds to search-
ing for a pointwise minimizer x (→ h∗(x)(θ) of the
parametrized tasks introduced in Eq. (1) with, for in-
stance, the implicit space constraint that θ (→ h∗(x)(θ)
is a continuous function for each input x. We show in
Proposition S.7.1 that this is precisely the case in QR.
Interestingly, the empirical counterpart of the true
risk minimization can now be considered with a much
richer family of penalty terms:

min
h∈H

RS(h) + Ω(h), RS(h) := 1
n

∑n

i=1
V(yi, h(xi)). (7)

Here, Ω(h) can be a weighted sum of various penalties

• imposed directly on (θ, x) (→ h(x)(θ), or
• integrated constraints on either θ (→ h(x)(θ) or x (→

h(x)(θ) such as
∫

X

Ω1(h(x)(·))dP(x)or
∫

Θ
Ω2(h(·)(θ))dµ(θ)

which allow the property enforced by Ω1 or Ω2 to
hold pointwise on X or Θ respectively.

It is worthwhile to see a concrete example before turn-
ing to the numerical solution (Section 3): in quan-
tile regression, the monotonicity assumption of the
θ (→ h(x)(θ) function can be encoded by choosing Ω1
as

Ω1(f) = λnc

∫

Θ
|−(∂f)(θ)|+dµ(θ).

Many different models (H) could be applied to solve
this problem. In our work we consider Reproducing
Kernel Hilbert Spaces as they offer a simple and prin-
cipled way to define regularizers by the appropriate
choice of kernels and exhibit a significant flexibility.

3 SOLVING THE PROBLEM IN
RKHSs

This section is dedicated to solving the ITL problem
defined in Eq. (7). In Section 3.1 we focus on the ob-
jective (Ṽ). The applied vv-RKHS model family is
detailed in Section 3.2 with various penalty examples
followed by representer theorems, giving rise to com-
putational tractability.

3.1 Sampled Empirical Risk

In practice solving Eq. (7) can be rather challenging
due to the integral over θ. One might consider different
numerical integration techniques to handle this issue.
We focus here on Quasi Monte Carlo (QMC) methods2
as they allow (i) efficient optimization over vv-RKHSs
which we will use for modelling H (Proposition 3.1),
and (ii) enable us to derive generalization guarantees
(Proposition 4.1). Indeed, let

Ṽ(y, h(x)) :=
∑m

j=1
wjv(θj, y, h(x)(θj)) (8)

be the QMC approximation of Eq. (5). Let wj =
m−1F−1(θj), and (θj)m

j=1 be a sequence with val-
ues in [0, 1]d such as the Sobol or Halton sequence
where µ is assumed to be absolutely continuous w. r. t.
the Lebesgue measure and F is the associated cdf.
Using this notation and the training samples S =
((xi, yi))n

i=1, the empirical risk takes the form

R̃S(h) := 1
n

∑n

i=1
Ṽ(yi, h(xi)) (9)

and the problem to solve is

min
h∈H

R̃S(h) + Ω(h). (10)

3.2 Hypothesis class (H)

Recall that H ⊆ F (X; F (Θ; Y)), in other words h(x)
is a Θ (→ Y function for all x ∈ X. In this work we
assume that the Θ (→ Y mapping can be described
by an RKHS HkΘ associated to a kΘ: Θ × Θ → R
scalar-valued kernel defined on the hyperparameters.
Let kX:X × X → R be a scalar-valued kernel on the
input space. The x (→ (hyperparameter (→ output)
relation, i. e. h:X → HkΘ is then modelled by
the Vector-Valued Reproducing Kernel Hilbert Spa-
ce HK = span { K(·, x)f | x ∈ X, f ∈ HkΘ }, where
the operator-valued kernel K is defined as K(x, z) =
kX(x, z)I, and I = IHkΘ

is the identity operator on
HkΘ .

This so-called decomposable Operator-Valued Kernel
has several benefits and gives rise to a function space
with a well-known structure. One can consider ele-
ments h ∈ HK as mappings from X to HkΘ , and also
as functions from (X×Θ) to R. It is indeed known that
there is an isometry between HK and HkX

⊗HkΘ , the
RKHS associated to the product kernel kX ⊗kΘ. The
equivalence between these views allows a great flexi-
bility and enables one to follow a functional point of
view (to analyse statistical aspects) or to leverage the

2See Section S.10.1 of the supplement for a discussion
on other integration techniques.

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

tensor product point of view (to design new kind of
penalization schemes). Below we detail various regu-
larizers before focusing on the representer theorems.

• Ridge Penalty: For QR and CSC, a natural reg-
ularization is the squared vv-RKHS norm

ΩRIDGE(h) = λ
2 ∥h∥2

HK
, λ > 0. (11)

This choice is amenable to excess risk analysis (see
Proposition 4.1). It can be also seen as the counter-
part of the classical (multi-task regularization term
introduced by Sangnier et al. (2016), compatible
with an infinite number of tasks. ∥·∥2

HK
acts by

constraining the solution to a ball of a finite radius
within the vv-RKHS, whose shape is controlled by
both kX and kΘ.

• L2,1-penalty: For DLSE, it is more adequate to
apply an L2,1-RKHS mixed regularizer:

ΩDLSE(h) = 1
2

∫

Θ
∥h(·)(θ)∥2

HkX
dµ(θ) (12)

which is an example of a Θ-integrated penalty. This
Ω choice allows the preservation of the θ-property
(see Fig. 2), i. e. that the proportion of the outliers
is θ.

• Shape Constraints: Taking the example of QR it
is advantageous to ensure the monotonicity of the
estimated quantile function Let ∂Θh denotes the
derivative of h(x)(θ) with respect to θ. Then one
should solve

arg min
h∈HK

R̃S(h) + ΩRIDGE(h)

s. t. ∀(x, θ) ∈ X × Θ, (∂Θh)(x)(θ) ! 0.

However, the functional constraint prevents a
tractable optimization scheme. To mitigate this bot-
tleneck, we penalize if the derivative of h w. r. t. θ
is negative:

Ωnc(h) := λnc

∫

X

∫

Θ
|−(∂Θh)(x)(θ)|+dµ(θ)dP(x). (13)

When P := PX this penalization can rely on the
same anchors and weights as the ones used to ap-
proximate the integrated loss function:

Ω̃nc(h) = λnc
∑n,m

i,j=1
wj|−(∂Xh)(xi)(θj)|+. (14)

Thus, one can modify the overall regularizer in QR
to be

Ω(h) := ΩRIDGE(h) + Ω̃nc(h). (15)

3.3 Representer Theorems

Apart from the flexibility of regularizer design, the
other advantage of applying vv-RKHS as hypothesis

class is that it gives rise to finite-dimensional represen-
tation of the ITL solution under mild conditions. The
representer theorem Proposition 3.1 applies to CSC
when λnc = 0 and to QR when λnc > 0.
Proposition 3.1 (Representer). Assume that for
∀θ ∈ Θ, vθ is a proper lower semicontinuous convex
function with respect to its second argument. Then

arg min
h∈HK

R̃S(h) + Ω(h), λ > 0

with Ω(h) defined as in Eq. (15), has a unique solution
h∗, and ∃ (αij)

n,m
i,j=1 , (βij)

n,m
i,j=1 ∈ R2nm such that ∀x ∈

X

h∗(x) =
n∑

i=1
kX(x, xi)

(
m∑

j=1
αijkΘ(·, θj) + βij(∂2kΘ)(·, θj)

)
.

Sketch of the proof. First, we prove that the func-
tion to minimize is coercive, convex, lower semicontin-
uous, hence it has a unique minimum. Then HK is
decomposed into two orthogonal subspaces and we use
the reproducing property to get the finite representa-
tion.

For DLSE, we similarly get a representer theorem with
the following modelling choice. Let kb : Θ × Θ → R
be a scalar-valued kernel (possibly different from kθ),
Hkb

the associated RKHS and t ∈ Hkb
. Assume

also that Θ ⊆ [ϵ, 1] where ϵ > 0.3 Then, learning a
continuum of level sets boils down to the minimization
problem

arg min
h∈HK,t∈Hkb

R̃S(h, t) + Ω̃(h, t), λ > 0, (16)

where Ω̃(h, t) = 1
2

∑m
j=1 wj∥h(·)(θj)∥2

HkX

+ λ
2 ∥t∥2

Hkb
,

R̃S(h, t) = 1
n

∑n,m
i,j=1

wj

θj

(
|t(θj) − h(xi)(θj)|+ − t(θj)

)
.

Proposition 3.2 (Representer). Assume that kΘ is
bounded: supθ∈Θ kΘ(θ, θ) < +∞. Then the minimiza-
tion problem described in Eq. (16) has a unique so-
lution (h∗, t∗) and there exist (αij)

n,m
i,j=1 ∈ Rn×m and

(βj)
m
j=1 ∈ Rm such that for ∀(x, θ) ∈ X × [ϵ, 1],

h∗(x)(θ) =
∑n,m

i,j=1
αijkX(x, xi)kΘ(θ, θj),

t∗(θ) =
∑m

j=1
βjkb(θ, θj).

Sketch of the proof. First we show that the infimum
exists, and that it must be attained in some subspace of
HK×Hkb

over which the objective function is coercive.
By the reproducing property, we get the claimed finite
decomposition.

Remarks:
3We choose Θ ⊆ [ϵ, 1], ϵ > 0 rather than Θ ⊆ [0, 1]

because the loss might not be integrable on [0, 1].

Infinite Task Learning in RKHSs

Table 1: Quantile Regression on 20 UCI datasets. Reported: 100×value of the pinball loss, 100×crossing loss
(smaller is better). p.-val.: outcome of the Mann-Whitney-Wilcoxon test of JQR vs. ∞-QR and Independent
vs. ∞-QR. Boldface: significant values w. r. t. ∞-QR.

dataset JQR IND-QR ∞-QR

(pinball p.-val.) (cross p.-val.) (pinball p.-val.) (cross p.-val.) pinball cross

CobarOre 159 ± 24 9 · 10−01 0.1 ± 0.4 6 · 10−01 150 ± 21 2 · 10−01 0.3 ± 0.8 7 · 10−01 165 ± 36 2.0 ± 6.0
engel 175 ± 555 6 · 10−01 0.0 ± 0.2 1 · 10+00 63 ± 53 8 · 10−01 4.0 ± 12.8 8 · 10−01 47 ± 6 0.0 ± 0.1

BostonHousing 49 ± 4 8 · 10−01 0.7 ± 0.7 2 · 10−01 49 ± 4 8 · 10−01 1.3 ± 1.2 1 · 10−05 49 ± 4 0.3 ± 0.5
caution 88 ± 17 6 · 10−01 0.1 ± 0.2 6 · 10−01 89 ± 19 4 · 10−01 0.3 ± 0.4 2 · 10−04 85 ± 16 0.0 ± 0.1

ftcollinssnow 154 ± 16 8 · 10−01 0.0 ± 0.0 6 · 10−01 155 ± 13 9 · 10−01 0.2 ± 0.9 8 · 10−01 156 ± 17 0.1 ± 0.6
highway 103 ± 19 4 · 10−01 0.8 ± 1.4 2 · 10−02 99 ± 20 9 · 10−01 6.2 ± 4.1 1 · 10−07 105 ± 36 0.1 ± 0.4
heights 127 ± 3 1 · 10+00 0.0 ± 0.0 1 · 10+00 127 ± 3 9 · 10−01 0.0 ± 0.0 1 · 10+00 127 ± 3 0.0 ± 0.0
sniffer 43 ± 6 8 · 10−01 0.1 ± 0.3 2 · 10−01 44 ± 5 7 · 10−01 1.4 ± 1.2 6 · 10−07 44 ± 7 0.1 ± 0.1

snowgeese 55 ± 20 7 · 10−01 0.3 ± 0.8 3 · 10−01 53 ± 18 6 · 10−01 0.4 ± 1.0 5 · 10−02 57 ± 20 0.2 ± 0.6
ufc 81 ± 5 6 · 10−01 0.0 ± 0.0 4 · 10−04 82 ± 5 7 · 10−01 1.0 ± 1.4 2 · 10−04 82 ± 4 0.1 ± 0.3

BigMac2003 80 ± 21 7 · 10−01 1.4 ± 2.1 4 · 10−04 74 ± 24 9 · 10−02 0.9 ± 1.1 7 · 10−05 84 ± 24 0.2 ± 0.4
UN3 98 ± 9 8 · 10−01 0.0 ± 0.0 1 · 10−01 99 ± 9 1 · 10+00 1.2 ± 1.0 1 · 10−05 99 ± 10 0.1 ± 0.4

birthwt 141 ± 13 1 · 10+00 0.0 ± 0.0 6 · 10−01 140 ± 12 9 · 10−01 0.1 ± 0.2 7 · 10−02 141 ± 12 0.0 ± 0.0
crabs 11 ± 1 4 · 10−05 0.0 ± 0.0 8 · 10−01 11 ± 1 2 · 10−04 0.0 ± 0.0 2 · 10−05 13 ± 3 0.0 ± 0.0

GAGurine 61 ± 7 4 · 10−01 0.0 ± 0.1 3 · 10−03 62 ± 7 5 · 10−01 0.1 ± 0.2 4 · 10−04 62 ± 7 0.0 ± 0.0
geyser 105 ± 7 9 · 10−01 0.1 ± 0.3 9 · 10−01 105 ± 6 9 · 10−01 0.2 ± 0.3 6 · 10−01 104 ± 6 0.1 ± 0.2
gilgais 51 ± 6 5 · 10−01 0.1 ± 0.1 1 · 10−01 49 ± 6 6 · 10−01 1.1 ± 0.7 2 · 10−05 49 ± 7 0.3 ± 0.3
topo 69 ± 18 1 · 10+00 0.1 ± 0.5 1 · 10+00 71 ± 20 1 · 10+00 1.7 ± 1.4 3 · 10−07 70 ± 17 0.0 ± 0.0

mcycle 66 ± 9 9 · 10−01 0.2 ± 0.3 7 · 10−03 66 ± 8 9 · 10−01 0.3 ± 0.3 7 · 10−06 65 ± 9 0.0 ± 0.1
cpus 7 ± 4 2 · 10−04 0.7 ± 1.0 5 · 10−04 7 ± 5 3 · 10−04 1.2 ± 0.8 6 · 10−08 16 ± 10 0.0 ± 0.0

• Models with bias: it can be advantageous to add a
bias to the model, which is here a function of the hy-
perparameter θ: h(x)(θ) = f(x)(θ) + b(θ), f ∈ HK,
b ∈ Hkb

, where kb : Θ × Θ → R is a scalar-valued
kernel. This can be the case for example if the kernel
on the hyperparameters is the constant kernel, i. e.
kΘ(θ, θ ′) = 1 (∀θ, θ ′ ∈ Θ), hence the model f(x)(θ)
would not depend on θ. An analogous statement
to Proposition 3.1 still holds for the biased model if
one adds a regularization λb∥b∥2

Hkb
, λb > 0 to the

risk.
• Relation to JQR: In ∞-QR, by choosing kΘ to

be the Gaussian kernel, kb(x, z) = { x }(z), µ =
1
m

∑m
j=1 δθj

, where δθ is the Dirac measure concen-
trated on θ, one gets back Sangnier et al. (2016)’s
Joint Quantile Regression (JQR) framework as a
special case of our approach. In contrast to the
JQR, however, in ∞-QR one can predict the quan-
tile value at any θ ∈ (0, 1), even outside the (θj)m

j=1
used for learning.

• Relation to q-OCSVM: In DLSE, by choosing
kΘ(θ, θ ′) = 1 (for all θ , θ ′ ∈ Θ) to be the constant
kernel, kb(θ, θ ′) = { θ }(θ ′), µ = 1

m

∑m
j=1 δθj

, our
approach specializes to q-OCSVM (Glazer et al.,
2013).

• Relation to Kadri et al. (2016): Note that Opera-
tor-Valued Kernels for functional outputs have also
been used in (Kadri et al., 2016), under the form of

integral operators acting on L2 spaces. Both kernels
give rise to the same space of functions; the bene-
fit of our approach being to provide an exact finite
representation of the solution (see Proposition 3.1).

• Efficiency of the decomposable kernel: this kernel
choice allows to rewrite the expansions in Propo-
sitions 3.1 and 3.2 as a Kronecker products and
the complexity of the prediction of n ′ points for
m ′ quantile becomes O(m ′mn + n ′nm) instead of
O(m ′mn ′n).

4 Excess Risk Bounds

Below we provide a generalization error analysis to the
solution of Eq. (10) for QR and CSC (with Ridge reg-
ularization and without shape constraints) by stabil-
ity argument (Bousquet et al., 2002), extending the
work of Audiffren et al. (2013) to Infinite-Task Learn-
ing. The proposition (finite sample bounds are given
in Corollary S.9.6) instantiates the guarantee for the
QMC scheme.
Proposition 4.1 (Generalization). Let h∗ ∈ HK be
the solution of Eq. (10) for the QR or CSC problem
with QMC approximation. Under mild conditions on
the kernels kX, kΘ and PX,Y , stated in the supplement,
one has

R(h∗) " R̃S(h∗) + OPX,Y

(
1√
λn

)
+ O

(
log(m)√
λm

)
. (17)

Sketch of the proof. The error resulting from sam-

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

pling PX,Y and the inexact integration is respectively
bounded by β-stability (Kadri et al., 2016) and QMC
results.4

(n, m) Trade-off: The proposition reveals the inter-
play between the two approximations, n (the number
of training samples) and m (the number of locations
taken in the integral approximation), and allows to
identify the regime in λ = λ(n,m) driving the excess
risk to zero. Indeed by choosing m =

√
n and dis-

carding logarithmic factors for simplicity, λ ≫ n−1 is
sufficient. The mild assumptions imposed are: bound-
edness on both kernels and the random variable Y, as
well as some smoothness of the kernels.

5 Numerical Examples

In this section we provide numerical examples illustrat-
ing the efficiency of the proposed ITL approach.5 We
used the following datasets in our experiments:

• Quantile Regression: we used (i) a sine synthetic
benchmark (Sangnier et al., 2016): a sine curve at
1Hz modulated by a sine envelope at 1/3Hz and
mean 1, distorted with a Gaussian noise of mean
0 and a linearly decreasing standard deviation from
1.2 at x = 0 to 0.2 at x = 1.5. (ii) 20 standard regres-
sion datasets from UCI. The number of samples var-
ied between 38 (CobarOre) and 1375 (Height). The
observations were standardised to have unit variance
and zero mean for each attribute.

• Density Level-Set Estimation: The Wilt database
from the UCI repository with 4839 samples and 5
attributes, and the Spambase UCI dataset with 4601
samples and 57 attributes served as benchmarks.

Additional experiments related to the CSC problem
are provided in Section S.10.5.

Note on Optimization: There are several ways to
solve the non-smooth optimization problems associ-
ated to the QR, DLSE and CSC tasks. One could
proceed for example by duality—as it was done in JQR
Sangnier et al. (2016)—, or apply sub-gradient descent
techniques (which often converge quite slowly). In or-
der to allow unified treatment and efficient solution
in our experiments we used the L-BFGS-B (Zhu et
al., 1997) optimization scheme which is widely pop-
ular in large-scale learning, with non-smooth exten-
sions (Keskar et al., 2017; Skajaa, 2010). The tech-
nique requires only evaluation of objective function
along with its gradient, which can be computed auto-
matically using reverse mode automatic differentiation
(as in Abadi et al. (2016)). To benefit from from the
available fast smooth implementations (Fei et al., 2014;
Jones et al., 2001), we applied an infimal convolution

(see Section S.10.3 of the supplementary material) on
the non-differentiable terms of the objective. Under
the assumtion that m = O(

√
n) (see Proposition 4.1),

the complexity per L-BFGS-B iteration is O(n2√n).
An experiment showing the impact of increasing m on
a synthetic dataset is provided in Fig. S.4.

QR: The efficiency of the non-crossing penalty is il-
lustrated in Fig. 1 on the synthetic sine wave dataset
described in Section 5 where n = 40 and m = 20
points have been generated. Many crossings are visi-
ble on the right plot, while they are almost not noti-
cible on the left plot, using the non-crossing penalty.
Concerning our real-world examples, to study the ef-
ficiency of the proposed scheme in quantile regression
the following experimental protocol was applied. Each
dataset (Section 5) was splitted randomly into a train-
ing set (70%) and a test set (30%). We optimized the
hyperparameters by minimizing a 5-folds cross valida-
tion with a Bayesian optimizer6 (For further details
see Section S.10.4). Once the hyperparameters were
obtained, a new regressor was learned on the whole
training set using the optimized hyperparameters. We
report the value of the pinball loss and the crossing
loss on the test set for three methods: our technique
is called ∞-QR, we refer to Sangnier et al. (2016)’s
approach as JQR, and independent learning (abbrevi-
ated as IND-QR) represents a further baseline.

We repeated 20 simulations (different random training-
test splits); the results are also compared using a
Mann-Whitney-Wilcoxon test. A summary is provided
in Table 1. Notice that while JQR is tailored to pre-
dict finite many quantiles, our ∞-QR method esti-
mates the whole quantile function hence solves a more
challenging task. Despite the more difficult problem
solved, as Table 1 suggest that the performance in
terms of pinball loss of ∞-QR is comparable to that
of the state-of-the-art JQR on all the twenty studied
benchmarks, except for the ‘crabs’ and ‘cpus’ datasets
(p.-val. < 0.25%). In addition, when considering the
non-crossing penalty one can observe that ∞-QR out-
performs the IND-QR baseline on eleven datasets (p.-
val. < 0.25%) and JQR on two datasets. This il-
lustrates the efficiency of the constraint based on the
continuum scheme.

DLSE: To assess the quality of the estimated
model by ∞-OCSVM, we illustrate the θ-property

4The QMC approximation may involve the Sobol se-
quence with discrepancy m−1 log(m)s (s = dim(Θ)).

5The code is available at https://bitbucket.org/
RomainBrault/itl.

6We used a Gaussian Process model and minimized the
Expected improvement. The optimizer was initialized us-
ing 27 samples from a Sobol sequence and ran for 50 itera-
tions.

Infinite Task Learning in RKHSs

0.0 0.5 1.0 1.5
X

�3

�2

�1

0

1

2

3

Y

Non-crossing: �nc = 10.0

0.0 0.5 1.0 1.5
X

Y

Crossing: �nc = 0

0.0

0.2

0.4

0.6

0.8

1.0

✓

0.0

0.2

0.4

0.6

0.8

1.0

✓

Figure 1: Impact of crossing penalty on toy data. Left plot: strong non-crossing penalty (λnc = 10). Right
plot: no non-crossing penalty (λnc = 0). The plots show 100 quantiles of the continuum learned, linearly spaced
between 0 (blue) and 1 (red). Notice that the non-crossing penalty does not provide crossings to occur in the
regions where there is no points to enforce the penalty (e. g. x ∈ [0.13, 0.35]). This phenomenon is alleviated by
the regularity of the model.

(Schölkopf et al., 2000): the proportion of inliers
has to be approximately 1 − θ (∀θ ∈ (0, 1)).
For the studied datasets (Wilt, Spambase) we used
the raw inputs without applying any preprocess-
ing. Our input kernel was the exponentiated χ2 ker-
nel kX(x, z) := exp

(
−γX

∑d
k=1(xk − zk)2/(xk + zk)

)

with bandwidth γX = 0.25. A Gauss-Legendre
quadrature rule provided the integral approximation
in Eq. (8), with m = 100 samples. We chose the Gaus-
sian kernel for kΘ; its bandwidth parameter γΘ was
the 0.2−quantile of the pairwise Euclidean distances
between the θj’s obtained via the quadrature rule. The
margin (bias) kernel was kb = kΘ. As it can be seen
in Fig. 2, the θ-property holds for the estimate which
illustrates the efficiency of the proposed continuum ap-
proach for density level-set estimation.

6 Conclusion

In this work we proposed Infinite Task Learning, a
novel nonparametric framework aiming at jointly solv-
ing parametrized tasks for a continuum of hyperpa-
rameters. We provided excess risk guarantees for the
studied ITL scheme, and demonstrated its practical ef-
ficiency and flexibility in various tasks including cost-
sensitive classification, quantile regression and density
level set estimation.

0.0 0.2 0.4 0.6 0.8 1.0
✓

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
in

lie
rs

Dataset: wilt

Train

Test

Oracle Train

0.0 0.2 0.4 0.6 0.8 1.0
✓

P
ro

p
or

ti
on

of
in

lie
rs

Dataset: spambase

Train

Test

Oracle Train

Figure 2: Density Level-Set Estimation: the θ-
property is approximately satisfied.

Acknowledgments

The authors thank Arthur Tenenhaus for some in-
sightful discussions. This work was supported by
the Labex DigiCosme (project ANR-11-LABEX-0045-
DIGICOSME) and the industrial chair Machine
Learning for Big Data at Télécom ParisTech.

References

Abadi, M. et al. (2016). “Tensorflow: Large-scale ma-
chine learning on heterogeneous distributed sys-
tems.” In: USENIX Symposium on Operating Sys-

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

tems Design and Implementation (OSDI), pp. 265–
283 (cit. on p. 7).

Álvarez, M. A., L. Rosasco, and N. D. Lawrence (2012).
“Kernels for vector-valued functions: a review.” In:
Foundations and Trends in Machine Learning 4.3,
pp. 195–266 (cit. on p. 3).

Audiffren, J. and H. Kadri (2013). “Stability of Multi-
Task Kernel Regression Algorithms.” In: Asian
Conference on Machine Learning (ACML). Vol. 29.
PMLR, pp. 1–16 (cit. on p. 6).

Bach, F. et al. (2012). “Optimization with sparsity-
inducing penalties.” In: Foundations and Trends in
Machine Learning 4.1, pp. 1–106 (cit. on p. 1).

Bousquet, O. and A. Elisseeff (2002). “Stability and
generalization.” In: Journal of Machine Learning
Research 2, pp. 499–526 (cit. on p. 6).

Carmeli, C. et al. (2010). “Vector valued reproducing
kernel Hilbert spaces and universality.” In: Analysis
and Applications 8 (1), pp. 19–61 (cit. on p. 2).

Ciliberto, C. et al. (2017). “Consistent multitask learn-
ing with nonlinear output relations.” In: Advances
in Neural Information Processing Systems (NIPS),
pp. 1986–1996 (cit. on p. 3).

Evgeniou, T., C. A. Micchelli, and M. Pontil (2005).
“Learning Multiple Tasks with kernel methods.” In:
JMLR 6, pp. 615–637 (cit. on p. 3).

Evgeniou, T. and M. Pontil (2004). “Regularized
multi–task learning.” In: Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pp. 109–117
(cit. on p. 1).

Fei, Y. et al. (2014). “Parallel L-BFGS-B algorithm on
GPU.” In: Computers & Graphics 40, pp. 1–9 (cit.
on p. 7).

Glazer, A., M. Lindenbaum, and S. Markovitch
(2013). “q-OCSVM: A q-quantile estimator for
high-dimensional distributions.” In: Advances in
Neural Information Processing Systems (NIPS),
pp. 503–511 (cit. on pp. 1–3, 6).

Hastie, T. et al. (2004). “The entire regularization path
for the support vector machine.” In: Journal of Ma-
chine Learning Research 5.Oct, pp. 1391–1415 (cit.
on p. 1).

Jones, E., T. Oliphant, P. Peterson, et al. (2001).
SciPy: Open source scientific tools for Python (cit.
on p. 7).

Kadri, H. et al. (2016). “Operator-valued Kernels
for Learning from Functional Response Data.” In:
Journal of Machine Learning Research 17, pp. 1–54
(cit. on pp. 6, 7).

Keskar, N. and A. Wächter (2017). “A limited-memory
quasi-Newton algorithm for bound-constrained
non-smooth optimization.” In: Optimization Meth-
ods and Software, pp. 1–22 (cit. on p. 7).

Koenker, R. and G. Bassett Jr (1978). “Regression
quantiles.” In: Econometrica: journal of the Econo-
metric Society, pp. 33–50 (cit. on pp. 1, 2).

Pedrick, G. (1957). “Theory of reproducing kernels for
Hilbert spaces of vector-valued functions.” PhD the-
sis. University of Kansas (cit. on p. 1).

Sangnier, M., O. Fercoq, and F. d’Alché-Buc (2016).
“Joint quantile regression in vector-valued RKHSs.”
In: Advances in Neural Information Processing Sys-
tems (NIPS), pp. 3693–3701 (cit. on pp. 2, 3, 5–7).

Schölkopf, B. et al. (2000). “New support vector al-
gorithms.” In: Neural computation 12.5, pp. 1207–
1245 (cit. on pp. 1, 3, 8).

Skajaa, A. (2010). “Limited memory BFGS for non-
smooth optimization.” In: Master’s thesis (cit. on
p. 7).

Stein, O. (2012). “How to solve a semi-infinite opti-
mization problem.” In: European Journal of Oper-
ational Research 223.2, pp. 312–320 (cit. on p. 1).

Takeuchi, I., T. Hongo, et al. (2013). “Parametric task
learning.” In: Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 1358–1366 (cit. on
pp. 1, 3).

Takeuchi, I., Q. V. Le, et al. (2006). “Nonparametric
quantile estimation.” In: Journal of Machine Learn-
ing Research 7, pp. 1231–1264 (cit. on p. 1).

Tibshirani, R. (1996). “Regression shrinkage and selec-
tion via the Lasso.” In: Journal of the Royal Sta-
tistical Society. Series B (Methodological), pp. 267–
288 (cit. on p. 1).

Tikhonov, A. N. and V. Y. Arsenin (1977). Solution of
Ill-posed Problems. Winston & Sons (cit. on p. 1).

Vapnik, V., S. E. Golowich, and A. J. Smola (1997).
“Support vector method for function approxima-
tion, regression estimation and signal processing.”
In: Advances in Neural Information Processing Sys-
tems (NIPS), pp. 281–287 (cit. on p. 1).

Vert, R. and J.-P. Vert (2006). “Consistency and con-
vergence rates of one-class SVMs and related algo-
rithms.” In: Journal of Machine Learning Research
7, pp. 817–854 (cit. on p. 3).

Wen, U.-P. and S.-T. Hsu (1991). “Linear bi-level pro-
gramming problemsa review.” In: Journal of the
Operational Research Society 42.2, pp. 125–133 (cit.
on p. 1).

Zadrozny, B. and C. Elkan (2001). “Learning and mak-
ing decisions when costs and probabilities are both
unknown.” In: ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining
(KDD), pp. 204–213 (cit. on p. 1).

Zhu, C. et al. (1997). “Algorithm 778: L-BFGS-B: For-
tran subroutines for large-scale bound-constrained
optimization.” In: ACM Transactions on Mathe-
matical Software (TOMS) 23.4, pp. 550–560 (cit.
on p. 7).

Infinite Task Learning in RKHSs

SUPPLEMENTARY MATERIAL
Acronyms

CSC Cost-Sensitive Classification
DLSE Density Level-Set Estimation
e. g. exempli gratia
∞-CSC Infinite Cost-Sensitive Classification
i. e. id est
i. i. d. independent identically distributed
ITL Infinite Task Learning
L-BFGS-B Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm for Bound con-

straind optimization
MC Monte-Carlo
MTL Multi-Task Learning
OCSVM One-Class Support Vector Machine
OVK Operator-Valued Kernel
PTL Parametric Task Learning
QMC Quasi Monte Carlo
QR Quantile Regression
RKHS Reproducing Kernel Hilbert Space
r. v. random variable
vv-RKHS Vector-Valued Reproducing Kernel Hilbert Space
w. r. t. with respect to

Below we provide the proofs of the results stated in the main part of the paper.

S.7 Quantile Regression

Let us recall the expression of the pinball loss (see Fig. S.3):

(18)vθ : (y, y ′) ∈ R2 #→ max (θ(y − y ′), (θ− 1)(y − y ′)) ∈ R.

Proposition S.7.1. Let X, Y be two random variables (r. v.s) respectively taking values in X and R, and
q:X → F([0, 1], R) the associated conditional quantile function. Let µ be a positive measure on [0, 1] such
that

∫1
0 E [vθ (Y, q(X)(θ))] dµ(θ) < ∞. Then for ∀h ∈ F (X; F ([0, 1] ; R))

R(h) − R(q) ! 0,

where R is the risk defined in Eq. (6).

Proof. The proof is based on the one given in (Li et al., 2007) for a single quantile. Let f ∈ F (X; F ([0, 1] ; R)),
θ ∈ (0, 1) and (x, y) ∈ X × R. Let also

s =

⎧
⎨
⎩

1 if y " f(x)(θ)

0 otherwise
, t =

⎧
⎨
⎩

1 if y " q(x)(θ)

0 otherwise
.

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

It holds that

vθ(y, h(x)(θ)) − vθ(y, q(x)(θ)) = θ(1 − s)(y − h(x)(θ)) + (θ− 1)s(y − h(x)(θ))
− θ(1 − t)(y − q(x)(θ)) − (θ− 1)t(y − q(x)(θ))

= θ(1 − t)(q(x)(θ) − h(x)(θ)) + θ((1 − t) − (1 − s))h(x)(θ)
+ (θ− 1)t(q(x)(θ− h(x)(θ))) + (θ− 1)(t − s)h(x)(θ) + (t − s)y

= (θ− t)(q(x)(θ) − h(x)(θ)) + (t − s)(y − h(x)(θ)).

Then, notice that

E[(θ− t)(q(X)(θ) − h(X)(θ))] = E[E[(θ− t)(q(X)(θ) − h(X)(θ))]|X] = E[E[(θ− t)|X](q(X)(θ) − h(X)(θ))]

and since q is the true quantile function,

E[t|X] = E[1{Y!q(X)(θ)}|X] = P[Y " q(X)(θ)|X] = θ,

so

E[(θ− t)(q(X)(θ) − h(X)(θ))] = 0.

Moreover, (t− s) is negative when q(x)(θ) " y " h(x)(θ), positive when h(x)(θ) " y " q(x)(θ) and 0 otherwise,
thus the quantity (t − s)(y − h(x)(θ)) is always positive. As a consequence,

R(h) − R(q) =
∫

[0,1]
E[vθ(Y, h(X)(θ)) − vθ(Y, q(X)(θ))]dµ(θ) ! 0

which concludes the proof.

The Proposition S.7.1 allows

θ− 1

θ

y − h(x)

vθ(y, h(x))

Figure S.3: Pinball loss for θ = 0.8.

us to derive conditions under
which the minimization of the
risk above yields the true quan-
tile function. Under the as-
sumption that (i) q is contin-
uous (as seen as a function of
two variables), (ii) Supp(µ) =
[0, 1], then the minimization of
the integrated pinball loss per-
formed in the space of continu-

ous functions yields the true quantile function on the support of PX,Y .

S.8 Representer Propositions

Proof of Proposition 3.1. First notice that

J : h ∈ HK #→ 1
n

n∑

i=1

m∑

j=1
wjv(θj, yi, h(xi)(θj)) + λ

2∥h∥2
HK

∈ R (19)

is a proper lower semicontinuous strictly convex function (Bauschke et al., 2011, Corollary 9.4), hence J admits
a unique minimizer h∗ ∈ HK (Bauschke et al., 2011, Corollary 11.17). Let

(20)U = span
{

(K(·, xi)kΘ(·, θj))n,m
i,j=1

∣∣ ∀xi ∈ X, ∀θj ∈ Θ
}

⊂ HK.

Infinite Task Learning in RKHSs

Then U is a finite-dimensional subspace of HK, thus closed in HK, and it holds that U ⊕ U⊥ = HK, so h∗ can be
decomposed as h∗ = h∗

U + h∗
U⊥ with h∗

U ∈ U and h∗
U⊥ ∈ U⊥. Moreover, for all 1 " i " n and 1 " j " m,

h∗
U⊥(xi)(θj) = ⟨h∗

U⊥(xi), kΘ(·, θj)⟩HkΘ
= ⟨h∗

U⊥ , K(·, xi)kΘ(·, θj)⟩HK
= 0,

so J(h∗) = J(h∗
U) + λ

∥∥h∗
U⊥

∥∥2
HK

. However h∗ is the minimizer of J, therefore h∗
U⊥ = 0 and there exist (αij)

n,m
i,j=1

such that ∀x, θ ∈ X × Θ, h∗(x)(θ) =
∑n,m

i,j=1 αijkX(x, xi)kΘ(θ, θj).

Derivative shapes constraints: Reminder: for a function h of one variable, we denote ∂h the derivative
of h. For a function k(θ, θ ′) of two variables we denote ∂1k the derivative of k with respect to θ and ∂2k the
derivative of k with respect to θ ′. From Zhou (2008), notice that if f ∈ Hk, where Hk is a scalar-valued RKHS
on a compact subset Θ of Rd, and k ∈ C2(Θ × Θ) (in the sense of Ziemer (2012)) then ∂f ∈ Hk. Hence if one
add a new term of the form:

λnc

n∑

i =1

m∑

j =1
Ωnc ((∂ [h(xi)]) (θj)) = λnc

n∑

i=1

m∑

j=1
Ωnc ((∂h(xi))(θj))

where g is a strictly monotonically increasing function and λnc > 0, a new representer theorem can be obtained
by constructing the new set

U = span
{

(K(·, xi)kΘ(·, θj))n,m
i,j=1

∣∣ ∀xi ∈ X, ∀θj ∈ Θ
}

∪
{

(K(·, xi)(∂2kΘ)(·, θj))n,m
i,j=1

∣∣ ∀xi ∈ X, ∀θj ∈ Θ
}

⊂ HK.

The proof is the same as Proposition 3.1 with the new set U to obtain the expansion h(x)(θ) =∑n
i=1

∑m
j=1 αijkX(x, xi)kΘ(θ, θj) + βijk(x, xi)(∂2kΘ)(θ, θj). For the regularization notice that for a symmet-

ric function (∂1k)(θ, θ ′) = (∂2k)(θ ′, θ). Hence ⟨(∂1k)(·, θ ′), k(·, θ)⟩Hk
= ⟨k(·, θ ′), (∂2k)(·, θ)⟩Hk

and (∂kθ′)(θ) =
(∂∗kθ)(θ ′) and

∥h∥2
HK

= ⟨h, h⟩HK

=
n∑

i=1

m∑

j=1

n∑

i′=1

m∑

j′=1
αijαi′j′kX(xi, xi′)kΘ(θj, θj′) + αijβi′j′kX(xi, xi′)(∂2kΘ)(θj, θj′)

+ αi′j′βijkX(xi, xi′)(∂1kΘ)(θj, θj′) + βijβi′j′kX(xi, xi′)(∂1∂2kΘ)(θj, θj′)

Eventually (∂h(x))(θ) =
∑n

i=1
∑m

j=1 αijkX(x, xi)(∂1kΘ)(θ, θj) + βijk(x, xi)(∂1∂2kΘ)(θ, θj).

To prove Proposition 3.2, the following lemmas are useful.
Lemma S.8.1. (Carmeli et al., 2010) Let kX : X × X → R, kΘ : Θ × Θ → R be two scalar-valued kernels
and K(θ ′, θ) = kΘ(θ, θ ′)IHkX

. Then HK is isometric to HkX
⊗ HkΘ by means of the isometry W : f ⊗ g ∈

HkX
⊗ HkΘ #→ (θ #→ g(θ)f) ∈ HK.

Remark 1. Given kX : X × X → R, kΘ : Θ × Θ → R two scalar-valued kernels, we define K : (x, z) ∈ X × X #→
kX(x, z)IHkΘ

∈ L(HkΘ), K ′ : (θ, θ ′) ∈ Θ × Θ #→ kΘ(θ, θ ′)IHkX
∈ L(HkX

). Lemma S.8.1 allows us to say that
HK and HK′ are isometric by means of the isometry

W : h ∈ HK′ #→ (x #→ (θ #→ h(θ)(x))) ∈ HK. (21)

Lemma S.8.2. Let kX : X×X → R, kΘ : Θ×Θ → R be two scalar-valued kernels and K : (θ, θ ′) #→ kΘ(θ, θ ′)IHkX
.

For θ ∈ Θ, define Kθ : f ∈ HkX
#→ (θ ′ #→ K(θ ′, θ)f) ∈ HK. It is easy to see that K∗

θ is the evaluation operator
K∗
θ : h ∈ HK #→ h(θ) ∈ HkX

. Then ∀m ∈ N∗, ∀(θj)m
j=1 ∈ Θm,

(22)
(
+m

j=1 Im (Kθj
)
)

⊕
(
∩m

j=1 Ker (K∗
θj

)
)

= HK

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

Proof. The statement boils down to proving that V :=
(
+m

j=1 Im (Kθj
)
)

is closed in HK, since it is straightforward

that V⊥ =
(
∩m

j=1 Ker
(
K∗
θj

))
. Let (ej)

k
j=1 be an orthonormal basis of span

{
(kΘ(·, θj))m

j=1

}
⊂ HkΘ . Such

basis can be obtained by applying the Gram-Schmidt orthonormalization method to (kΘ(·, θj))m
j=1. Then, V =

span { ej · f, 1 " j " k, f ∈ HkX
}. Notice also that 1 " j, l " k, ∀f, g ∈ HkX

,

(23)⟨ej · f, el · g⟩HK
= ⟨ej, el⟩HkΘ

· ⟨f, g⟩HkX

Let (hn)n∈N∗ be a sequence in V converging to some h ∈ HK. By definition, one can find sequences
(f1,n)n∈N∗ , . . . , (fk,n)n∈N∗ ∈ HkX

such that ∀n ∈ N∗, hn =
∑k

j=1 ej · fn,j. Let p, q ∈ N∗. It holds

that, using the orthonormal property of (ej)
k
j=1 and Eq. (23), ∥hp − hq∥2

HK
=
∥∥∥
∑k

j=1 ej(fj,p − fj,q)
∥∥∥

2

HK

=
∑k

j=1∥fj,p − fj,q∥2
HkX

. (hn)n∈N∗ being convergent, it is a Cauchy sequence, thus so are the sequences (fj,n)n∈N∗ .
But HkX

is a complete space, so these sequences are convergent in HkX
, and by denoting fj = limn→∞ fj,n, one

gets h =
∑k

j=1 ek · fj. Therefore h ∈ V, V is closed and the orthogonal decomposition Eq. (22) holds.

Lemma S.8.3. Let kX, kΘ be two scalar kernels and K : (θ, θ ′) #→ kΘ(θ, θ ′)IHkX
. Let also m ∈ N∗ and

(θj)m
j=1 ∈ Θm, and V =

(
+m

j=1 Im (Kθj
)
)
. Then I : V → R defined as I(h) =

∑m
j=1∥h(θj)∥2

HkX

is coercive.

Proof. Notice first that if there exists θj such that kΘ(θj, θj) = 0, then Im (Kθj
) = 0, so without loss of

generality, we assume that kΘ(θj, θj) > 0 (1 " j " m). Notice that I is the quadratic form associated to
the L : HK → HK linear mapping L(h) =

∑m
j=1 Kθj

K∗
θj

. Indeed, ∀h ∈ V, I(h) =
∑m

j=1⟨K∗
θj

h, K∗
θj

h⟩HkX
=∑m

j=1⟨h, Kθj
K∗
θj

h⟩HK
= ⟨h, Lh⟩HK

. Moreover, ∀1 " j " m, Kθj
K∗
θj

has the same eigenvalues as K∗
θj

Kθj
, and

∀f ∈ HkX
, K∗
θj

Kθj
f = kΘ(θj, θj)f, so that the only possible eigenvalue is kΘ(θj, θj). Let h ∈ V, h ̸= 0. Because of

the Eq. (22), h cannot be simultaneously in all Ker (K∗
θj

), and there exists i0 such that I(h) ! kΘ(θi0 , θi0)∥h∥2
HK

.
Let γ = min

1!j!m
kΘ(θj, θj). By assumption γ > 0, and it holds that ∀h ∈ V, I(h) ! γ∥h∥2

HK
, which proves the

coercivity of I.

Proof of Proposition 3.2. Let K : (x, z) ∈ X × X #→ kX(x, z)IHkΘ
∈ L(HkΘ), K ′ : (θ, θ ′) ∈ Θ × Θ #→

kΘ(θ, θ ′)IHkX
∈ L(HkX

), and define

J:

⎧
⎪⎪⎨
⎪⎪⎩

HK × Hkb
→ R

(h, t) #→ 1
n

n,m∑

i,j=1

wj

θj

|t(θj) − h(xi)(θj)|+ +
m∑

j=1
wj

(
∥h(·)(θj)∥2

HkX

− t(θj)
)

+ λ

2∥t∥2
Hkb

.

Let V = W
(
+m

j=1 Im (K ′
θj

)
)

where W:HK′ → HK is defined in Eq. (21). Since W is an isometry, thanks
to Eq. (22), it holds that V ⊕ V⊥ = HK. Let (h, t) ∈ HK × Hkb

, there exists unique hV⊥ ∈ V⊥, hV ∈
V such that h = hV + hV⊥ . Notice that J(h, t) = J(hV + hV⊥ , t) = J(hV, t) since ∀1 " j " m, ∀x ∈ X,
hV⊥(x)(θj) = W−1hV⊥(θj)(x) = 0. Moreover, J is bounded by below so that its infinimum is well-defined, and

inf
(h,t)∈HK×Hkb

J(h, t) = inf
(h,t)∈V×Hkb

J(h, t). Finally, notice that J is coercive on V × Hkb
endowed with the sum of

the norm (which makes it a Hilbert space): if (hn, tn)n∈N∗ ∈ V×Hkb
is such that ∥hn∥HK

+∥tn∥Hkb
→

n→∞
+∞,

then either (∥hn∥HK
)n∈N or (∥tn∥Hkb

)n∈N has to diverge :

• If ∥tn∥Hkb
→

n→∞
+∞, since tn(θj) = ⟨tn, kb(·, θj)⟩Hkb

" kb(θj, θj)∥tn∥Hkb
" κb∥tn∥Hkb

(∀1 " j " m),
then J(hn, tn) ! λ

2 ∥tn∥2
Hkb

−
∑m

j=1 wjt(θj) →
n→∞

+∞.

• If ∥hn∥HK
→

n→∞
+∞, according to Lemma S.8.3, J(hn, tn) →

n→∞
+∞ as long as all wj are strictly positive.

Infinite Task Learning in RKHSs

Thus J is coercive, so that (Bauschke et al., 2011, Proposition 11.15) allows to conclude that J has a minimizer
(h∗, t∗) on V × Hkb

. Then, in the same fashion as Eq. (20), define U1 = span
{

(K(·, xi)kΘ(·, θj))n,m
i,j=1

}
⊂ V

and U2 = span
{

(kb(·, θj))m
j=1

}
⊂ Hkb

, and use the reproducing property to show that (h∗, t∗) ∈ U1 × U2, so
that there there exist (αij)

n,m
i,j=1 and (βj)

m
j=1 such that ∀x, θ ∈ X × Θ, h∗(x)(θ) =

∑n,m
i,j=1 αijkX(x, xi)kθ(θ, θj),

t∗(θ) =
∑m

j=1 βjkb(θ, θj).

S.9 Generalization error in the context of stability

The analysis of the generalization error will be performed using the notion of uniform stability introduced in
(Bousquet et al., 2002). For a derivation of generalization bounds in vv-RKHS, we refer to (kadri2016operator).
In their framework, the goal is to minimize a risk which can be expressed as

(24)RS,λ(h) = 1
n

n∑

i=1
ℓ(yi, h, xi) + λ∥h∥2

HK
,

where S = ((x1, y1), . . . , (xn, yn)) are i. i. d. inputs and λ > 0. We almost recover their setting by using losses
defined as

ℓ:

⎧
⎨
⎩

R × HK × X → R

(y, h, x) #→ Ṽ(y, f(x)),

where Ṽ is a loss associated to some local cost defined in Eq. (8). Then, they study the stability of the algorithm
which, given a dataset S, returns

(25)h∗
S = arg min

h∈HK

RS,λ(h).

There is a slight difference between their setting and ours, since they use losses defined for some y in the output
space of the vv-RKHS, but this difference has no impact on the validity of the proofs in our case. The use
of their theorem requires some assumption that are listed below. We recall the shape of the OVK we use :
K : (x, z) ∈ X×X #→ kX(x, z)IHkΘ

∈ L(HkΘ), where kX and kΘ are both bounded scalar-valued kernels, in other
words there exist (κX, κΘ) ∈ R2 such that sup

x∈X
kX(x, x) < κ2

X and sup
θ∈Θ

kΘ(θ, θ) < κ2
Θ.

Assumption 1. ∃κ > 0 such that ∀x ∈ X, ∥K(x, x)∥L(HkΘ) " κ2.
Assumption 2. ∀h1, h2 ∈ HkΘ , the function (x1, x2) ∈ X × X #→ ⟨K(x1, x2)h1, h2⟩HkΘ

∈ R, is measurable.
Remark 2. Assumptions 1, 2 are satisfied for our choice of kernel.
Assumption 3. The application (y, h, x) #→ ℓ(y, h, x) is σ-admissible, i. e. convex with respect to f and Lipschitz
continuous with respect to f(x), with σ as its Lipschitz constant.
Assumption 4. ∃ξ ! 0 such that ∀(x, y) ∈ X × Y and ∀S training set, ℓ(y, h∗

S, x) " ξ.
Definition S.9.1. Let S = ((xi, yi))n

i=1 be the training data. We call Si the training data Si =
((x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)), 1 " i " n.
Definition S.9.2. A learning algorithm mapping a dataset S to a function h∗

S is said to be β-uniformly stable
with respect to the loss function ℓ if ∀n ! 1, ∀1 " i " n, ∀S training set, ||ℓ(·, h∗

S, ·) − ℓ(·, h∗
Si , ·)||∞" β.

Proposition S.9.1. (Bousquet et al., 2002) Let S #→ h∗
S be a learning algorithm with uniform stability β with

respect to a loss ℓ satisfying Assumption 4. Then ∀n ! 1, ∀δ ∈ (0, 1), with probability at least 1 − δ on the
drawing of the samples, it holds that

R(h∗
S) " RS(h∗

S) + 2β+ (4β+ ξ)
√

log (1/δ)
n

.

Proposition S.9.2. (kadri2016operator) Under assumptions 1, 2, 3, a learning algorithm that maps a
training set S to the function h∗

S defined in Eq. (25) is β-stable with β = σ2κ2

2λn
.

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

S.9.1 Quantile Regression

We recall that in this setting, v(θ, y, h(x)(θ)) = max (θ(y − h(x)(θ)), (1 − θ)(y − h(x)(θ))) and the loss is

(26)ℓ:

⎧
⎨
⎩

R × HK × X → R

(y, h, x) #→ 1
m

∑m
j=1 max (θj(y − h(x)(θj)), (θj − 1)(y − h(x)(θj))).

Moreover, we will assume that |Y| is bounded by B ∈ R as a r. v.. We will therefore verify the hypothesis for
y ∈ [−B,B] and not y ∈ R.
Lemma S.9.3. In the case of the QR, the loss ℓ is σ-admissible with σ = 2κΘ.

Proof. Let h1, h2 ∈ HK and θ ∈ [0, 1]. ∀x, y ∈ X × R, it holds that

v(θ, y, h1(x)(θ)) − v(θ, y, h2(x)(θ)) = (θ− t)(h2(x)(θ) − h1(x)(θ)) + (t − s)(y − h1(x)(θ)),

where s = 1y!h1(x)(θ) and t = 1y!h2(x)(θ). We consider all possible cases for t and s :

• t = s = 0 : |(t − s)(y − h1(x)(θ))|" |h2(x)(θ) − h1(x)(θ)|
• t = s = 1 : |(t − s)(y − h1(x)(θ))|" |h2(x)(θ) − h1(x)(θ)|
• s = 1,t = 0 : |(t − s)(y − h1(x)(θ))|= |h1(x)(θ) − y|" |h1(x)(θ) − h2(x)(θ)|
• s = 0,t = 1 : |(t − s)(y − h1(x)(θ))|= |y − h1(x)(θ)|" |h1(x)(θ) − h2(x)(θ)| because of the conditions on t, s.

Thus |v(θ, y, h1(x)(θ)) − v(θ, y, h2(x)(θ))|" (θ + 1)|h1(x)(θ) − h2(x)(θ)|" (θ + 1)κΘ||h1(x) − h2(x)||HkΘ
. By

summing this expression over the (θj)m
j=1, we get that

|ℓ(x, h1, y) − ℓ(x, h2, y)|" 1
m

m∑

j=1
(θj + 1)κΘ||h1(x) − h2(x)||HkΘ

" 2κΘ||h1(x) − h2(x)||HkΘ

and ℓ is σ-admissible with σ = 2κΘ.

Lemma S.9.4. Let S = ((x1, y1), . . . , (xn, yn)) be a training set and λ > 0. Then ∀x, θ ∈ X × (0, 1), it holds
that |h∗

S(x)(θ)|" κXκΘ

√
B
λ
.

Proof. Since h∗
S is the output of our algorithm and 0 ∈ HK, it holds that

λ||h∗
S||2 " 1

nm

n∑

i=1

m∑

j=1
v(θj, yi, 0) " 1

nm

n∑

i=1

m∑

j=1
max (θj, 1 − θj)|yi|" B.

Thus ||h∗
S||"

√
B
λ
. Moreover, ∀x, θ ∈ X × (0, 1), |h∗

S(x)(θ)|= |⟨h∗
S(x), kΘ(θ, ·)⟩HkΘ

|" ||h∗
S(x)||HkΘ

κΘ "
||h∗

S||HkΘ
κXκΘ which concludes the proof.

Lemma S.9.5. Assumption 4 is satisfied for ξ = 2
(
B + κXκΘ

√
B
λ

)
.

Proof. Let S = ((x1, y1), . . . , (xn, yn)) be a training set and h∗
S be the output of our algorithm. ∀(x, y) ∈

X × [−B,B], it holds that

ℓ(y, h∗
S, x) = 1

m

m∑

j=1
max (θj(y − h∗

S(x)(θj)), (θj − 1)(y − h∗
S(x)(θj))) " 2

m

m∑

j=1
|y − h∗

S(x)(θj)|

" 2
m

m∑

j=1
|y|+|h∗

S(x)(θj)|" 2
(

B + κXκΘ

√
B

λ

)
.

Infinite Task Learning in RKHSs

Corollary S.9.6. The QR learning algorithm defined in Eq. (10) is such that ∀n ! 1, ∀δ ∈ (0, 1), with
probability at least 1 − δ on the drawing of the samples, it holds that

(27)R̃(h∗
S) " R̃S(h∗

S) + 4κ2
Xκ

2
Θ

λn
+
[

8κ2
Xκ

2
Θ

λn
+ 2

(
B + κXκΘ

√
B

λ

)]√
log (1/δ)

n
.

Proof. This is a direct consequence of Proposition S.9.2, Proposition S.9.1, Lemma S.9.3 and Lemma S.9.5.

Definition S.9.3 (Hardy-Krause variation). Let Π be the set of subdivisions of the interval Θ = [0, 1]. A
subdivision will be denoted σ = (θ1, θ2, . . . , θp) and f: Θ → R be a function. We call Hardy-Krause variation of
the function f the quantity sup

σ∈Π

∑p−1
i=1 |f(θi+1) − f(θi)|.

Remark 3. If f is continuous, V(f) is also the limit as the mesh of σ goes to zero of the above quantity.

In the following, let f: θ #→ EX,Y [v(θ, Y, h∗
S(X)(θ))]. This function is of primary importance for our analysis, since

in the Quasi Monte-Carlo setting, the bound of Proposition 4.1 makes sense only if the function f has finite
Hardy-Krause variation, which is the focus of the following lemma.
Lemma S.9.7. Assume the boundeness of both scalar kernels kXand kΘ. Assume moreover that kΘ is C1 and
that its partial derivatives are uniformly bounded by some constant C. Then

V(f) " B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ
. (28)

Proof. It holds that

sup
σ ∈Π

p−1∑

i =1
|f(θi+1) − f(θi)| = sup

σ∈Π

p−1∑

i=1

∣∣∣∣
∫

v(θi+1, y, h∗
S(x)(θi+1))dPX,Y −

∫
v(θi, y, h∗

S(x)(θi))dPX,Y

∣∣∣∣

= sup
σ∈Π

p−1∑

i=1

∣∣∣∣
∫

v(θi+1, y, h∗
S(x)(θi+1)) − v(θi, y, h∗

S(x)(θi))dPX,Y

∣∣∣∣

" sup
σ∈Π

p−1∑

i=1

∫
|v(θi+1, y, h∗

S(x)(θi+1)) − v(θi, y, h∗
S(x)(θi))|dPX,Y

" sup
σ∈Π

∫ p−1∑

i=1
|v(θi+1, y, h∗

S(x)(θi+1)) − v(θi, y, h∗
S(x)(θi))|dPX,Y .

The supremum of the integral is smaller than the integral of the supremum, as such

(29)V(f) "
∫

V(fx,y)dPX,Y ,

where fx,y: θ #→ v(θ, y, h∗
S(x)(θ)) is the counterpart of the function f at point (x, y). To bound this quantity,

let us first bound locally V(fx,y). To that extent, we fix some (x, y) in the following. Since fx,y is continuous
(because kΘ is C1), then using Choquet (1969, Theorem 24.6), it holds that

V(fx,y) = lim
|σ|→0

p−1∑

i=1
|fx,y(θi+1) − fx,y(θi)|.

Moreover since k ∈ C1 and ∂kθ = (∂1k)(·, θ) has a finite number of zeros for all θ ∈ ×, one can assume that
in the subdivision considered afterhand all the zeros (in θ) of the residuals y − h∗

S(x)(θ) are present, so that
y − h∗

S(x)(θi+1) and y − h∗
S(x)(θi) are always of the same sign. Indeed, if not, create a new, finer subdivision

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

with this property and work with this one. Let us begin the proper calculation: let σ = (θ1, θ2, . . . , θp) be a
subdivision of Θ, it holds that ∀i ∈ { 1, . . . , p − 1 }:

|fx,y(θi+1) − fx,y(θi)| = |max (θi+1(y − h∗
S(x)(θi+1)), (1 − θi+1)(y − h∗

S(x)(θi+1)))
− max (θi(y − h∗

S(x)(θi)), (1 − θi+1)(y − h∗
S(x)(θi)))|.

We now study the two possible outcomes for the residuals:

• If y − h(x)(θi+1) ! 0 and y − h(x)(θi) ! 0 then

|fx,y(θi+1) − fx,y(θi)| = |θi+1(y − h∗
S(x)(θi+1)) − θi(y − h∗

S(x)(θi))|
= |(θi+1 − θi)y + (θi − θi+1)h∗

S(x)(θi+1) + θi(h∗
S(x)(θi) − h∗

S(x)(θi+1))|
" |(θi+1 − θi)y|+|(θi − θi+1)h∗

S(x)(θi+1)|+|θi(h∗
S(x)(θi) − h∗

S(x)(θi+1))|.

From Lemma S.9.4, it holds that h∗
S(x)(θi+1) " κXκΘ

√
B
λ
. Moreover,

|h∗
S(x)(θi) − h∗

S(x)(θi+1)| =
∣∣∣⟨h(x), kΘ(θi, ·) − kΘ(θi+1, ·)⟩HkΘ

∣∣∣
" ∥h(x)∥HkΘ

∥kΘ(θi, ·) − kΘ(θi+1, ·)∥HkΘ

" κX

√
B

λ

√
|kΘ(θi, θi) + kΘ(θi+1, θi+1) − 2kΘ(θi+1, θi)|

" κX

√
B

λ

(√
|kΘ(θi+1, θi+1) − kΘ(θi+1, θi)| +

√
|kΘ(θi, θi) − kΘ(θi+1, θi)|

)
.

Since kΘ is C1, with partial derivatives uniformly bounded by C, |kΘ(θi+1, θi+1) − kΘ(θi+1, θi)| " C(θi+1 −

θi) and |kΘ(θi, θi) − kΘ(θi+1, θi)| " C(θi+1 − θi) so that |h∗
S(x)(θi) − h∗

S(x)(θi+1)| " κX

√
2BC
λ

√
θi+1 − θi

and overall

|fx,y(θi+1) − fx,y(θi)| "
(

B + κXκΘ

√
B

λ

)
(θi+1 − θi) + κX

√
2BC

λ

√
θi+1 − θi.

• If y − h(x)(θi+1) " 0 and y − h(x)(θi) " 0 then |fx,y(θi+1) − fx,y(θi)| =
|(1 − θi+1)(y − h∗

S(x)(θi+1)) − (1 − θi)(y − h∗
S(x)(θi))| " |h∗

S(x)(θi) − h∗
S(x)(θi+1)| + |(θi+1 − θi)y| +

|(θi − θi+1)h∗
S(x)(θi+1)| + |θi(h∗

S(x)(θi) − h∗
S(x)(θi+1))| so that with similar arguments one gets

(30)|fx,y(θi+1) − fx,y(θi)| "
(

B + κXκΘ

√
B

λ

)
(θi+1 − θi) + 2κX

√
2BC

λ

√
θi+1 − θi.

Therefore, regardless of the sign of the residuals y − h(x)(θi+1) and y − h(x)(θi), one gets Eq. (30). Since the
square root function has Hardy-Kraus variation of 1 on the interval Θ = [0, 1], it holds that

sup
σ∈Π

p−1∑

i =1
|fx,y(θi+1) − fx,y(θi)|" B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ
.

Combining this with Eq. (29) finally gives

V(f) " B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ
.

Infinite Task Learning in RKHSs

Lemma S.9.8. Let R be the risk defined in Eq. (6) for the quantile regression problem. Assume that (θ)m
j=1 have

been generated via the Sobol sequence and that kΘ is C1 and that its partial derivatives are uniformly bounded by
some constant C. Then

|R(h∗
S) − R̃(h∗

S)|"
(

B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ

)
log(m)

m
. (31)

Proof. Let f: θ #→ EX,Y [v(θ, Y, h∗
S(X)(θ))]. It holds that |R(h∗

S)− R̃(h∗
S)|" V(f) log(m)

m
according to classical Quasi-

Monte Carlo approximation results, where V(f) is the Hardy-Krause variation of f. Lemma S.9.7 allows then to
conclude.

Proof of Proposition 4.1. Combine Lemma S.9.8 and Corollary S.9.6 to get an asymptotic behaviour as n,m →
∞.

S.9.2 Cost-Sensitive Classification

In this setting, the cost is v(θ, y, h(x)(θ)) =
∣∣θ+1

2 − { −1 }(y)
∣∣|1 − yhθ(x)|+ and the loss is

ℓ:

⎧
⎨
⎩

R × HK × X → R

(y, h, x) #→ 1
m

∑m
j=1

∣∣∣θj+1
2 − { −1 }(y)

∣∣∣
∣∣1 − yhθj

(x)
∣∣
+.

It is easy to verify in the same fashion as for QR that the properties above still hold, but with constants σ = κΘ,
β = κ2

Xκ
2
Θ

2λn
, ξ = 1 + κXκΘ√

λ
. so that we get analogous properties to QR.

Corollary S.9.9. The CSC learning algorithm defined in Eq. (10) is such that ∀n ! 1, ∀δ ∈ (0, 1), with
probability at least 1 − δ on the drawing of the samples, it holds that

R̃(h∗
S) " R̃S(h∗

S) + κ2
Xκ

2
Θ

λn
+
(

2κ2
Xκ

2
Θ

λn
+ 1 + κXκΘ√

λ

)√
log (1/δ)

n
.

S.10 Experimental remarks

We present here more details on the experimental protocol used in the main paper as well as new experiments.

S.10.1 Alternative hyperparameters sampling

Many quadrature rules such as Monte-Carlo (MC) and QMC methods are well suited for Infinite Task Learning.
For instance when Θ is high dimensional, MC is typically prefered over QMC, and vice versa. If Θ is one dimen-
sional and the function to integrate is smooth enough then a Gauss-Legendre quadrature would be preferable.
In Section 3.1 of the main paper we provide a unified notation to handle MC, QMC and other quadrature rules.
In the case of

• MC: wj = 1
m

and (θj)m
j=1 ∼ µ⊗m.

• QMC: wj = m−1F−1(θj) and (θj)m
j=1 is a sequence with values in [0, 1]d such as the Sobol or Halton

sequence, µ is assumed to be absolutely continuous w. r. t. the Lebesgue measure, F is the associated cdf.

• Quadrature rules: ((θj, w
′
j))m

j=1 is the indexed set of locations and weights produced by the quadrature rule,
wj = w ′

jfµ(θj), µ is assumed to be absolutely continuous w. r. t. the Lebesgue measure, and fµ denotes its
corresponding probability density function.

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

�2.5

0.0

2.5

Y

m = 2

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

�2.5

0.0

2.5

Y

m = 34

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

�2.5

0.0

2.5

Y

m = 67

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

�2.5

0.0

2.5

Y

m = 100

Figure S.4: Impact of the number of hyperparameters sampled.

S.10.2 Impact of the number of hyperparameters sampled

In the experiment presented on Fig. S.4, on the sine synthetic benchmark, we draw n = 1000 training points and
study the impact of increasing m on the quality of the quantiles at θ ∈ { 0.05, 0.25, 0.5, 0.75, 0.95 }. We notice
that when m ! 34 ≈

√
1000 there is little benefit to draw more m samples are the quantile curves do not change

on the ntest = 2000 test points.

S.10.3 Smoothifying the cost function

The resulting κ-smoothed (κ ∈ R+) absolute value (ψκ1) and positive part (ψκ+) are as follows:

ψκ1 (p) :=
(
κ|·|#1

2 |·|2
)

(p) =

⎧
⎨
⎩

1
2κp2 if |p| " κ

|p| − κ
2 otherwise,

ψκ+(p) :=
(
κ|·|+#1

2 |·|2
)

(p) =

⎧
⎨
⎩

1
2κ |p|

2
+ if p " κ

p − κ
2 otherwise.

where # is the classical infimal convolution (Bauschke et al., 2011). All the smoothified loss functions used in
this paper have been gathered in Table S.2.

Remarks

• Minimizing the κ-smoothed pinball loss

vθ,κ(y, h(x)) = |θ− R−
(y − h(x))|ψκ1 (y − h(x)),

yields the quantiles when κ → 0, the expectiles as κ → +∞. The intermediate values are known as M-quantiles
(Breckling et al., 1988).

• In practice, the absolute value and positive part can be approximated by a smooth function by setting the
smoothing parameter κ to be a small positive value; the optimization showed a robust behaviour w. r. t. this
choice with a random coefficient initialization.

Impact of the Huber loss support The influence of the κ parameter is illustrated in Fig. S.5. For this
experiment, 10000 samples have been generated from the sine wave dataset described in Section 5, and the model

Infinite Task Learning in RKHSs

Table S.2: Examples for objective (8). ψκ1 , ψκ+: κ-smoothed absolute value and positive part. hx(θ) := h(x)(θ).

loss penalty

Quantile
∫

[0,1]

∣∣∣θ− R−
(y − hx(θ))

∣∣∣|y − hx(θ)|dµ(θ) λnc
∫
[0,1]

∣∣∣− dhx
dθ (θ)

∣∣∣
+

dµ(θ) + λ
2 ∥h∥2

HK

M-Quantile (smooth)
∫

[0,1]

∣∣∣θ− R−
(y − hx(θ))

∣∣∣ψκ
1 (y − hx(θ)) dµ(θ) λnc

∫
(0,1)ψ

κ
+
(
− dhx

dθ (θ)
)

dµ(θ) + λ
2 ∥h∥2

HK

Expectiles (smooth)
∫

[0,1]

∣∣∣θ− R−
(y − hx(θ))

∣∣∣ (y − hx(θ))2 dµ(θ) λnc
∫
(0,1)

∣∣∣− dhx
dθ (θ)

∣∣∣
2

+
dµ(θ) + λ

2 ∥h∥2
HK

Cost-Sensitive
∫

[−1,1]

∣∣∣∣
θ+ 1

2 − {−1}(y)
∣∣∣∣|1 − yhx(θ)|+dµ(θ) λ

2 ∥h∥2
HK

Cost-Sensitive (smooth)
∫

[−1,1]

∣∣∣∣
θ+ 1

2 − {−1}(y)
∣∣∣∣ψκ

+ (1 − yhx(θ)) dµ(θ) λ
2 ∥h∥2

HK

Level-Set
∫

[ϵ,1]
−t(θ) + 1

θ
|t(θ) − hx(θ)|+dµ(θ) 1

2

∫

[ϵ,1]
∥h(·)(θ)∥2

HkX
dµ(θ) + λ

2 ∥t∥2
Hkb

have been trained on 100 quantiles generated from a Gauss-Legendre Quadrature. When κ is large the expectiles
are learnt (dashed lines) while when κ is small the quantiles are recovered (the dashed lines on the right plot
match the theoretical quantiles in plain lines). It took 225s (258 iteration, and 289 function evaluations) to train
for κ = 1 · 101, 1313s for κ = 1 · 10−1 (1438 iterations and 1571 function evaluations), 931s for κ = 1e−3 (1169
iterations and 1271 function evaluations) and 879s for κ = 0 (1125 iterations and 1207 function evaluations).
We used a GPU Tensorflow implementation and run the experiments in float64 on a computer equipped with a
GTX 1070, and intel i7 7700 and 16GB of DRAM.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

0

5

Y

 = 10.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

0

5

Y

 = 0.1

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

0

5

Y

 = 0.001

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

0

5

Y

 = 0

Figure S.5: Impact of the Huber loss smoothing of the pinball loss for differents values of κ.

S.10.4 Experimental protocol for QR

In this section, we give additional details regarding the choices being made while implementing the ITL method
for ∞-QR.

QR real datasets For ∞-QR, kX, kΘ were Gaussian kernels. We set a bias term kb = kΘ. The hyperpa-
rameters optimized were λ, the weight of the ridge penalty, σX, the input kernel parameter, and σΘ = σb, the
output kernel parameter. They were optimized in the (log)space of

[
10−6, 106]3. The non-crossing constraint

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

λnc was set to 1. The model was trained on the continuum Θ = (0, 1) using QMC and Sobol sequences. For all
datasets we draw m = 100 quantiles form a Sobol sequence

For JQR we similarly chose two Gaussian kernels. The optimized hyperparameters were the same as for ∞-QR.
The quantiles learned were θ ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 }.

For the IND-QR baseline, we trained independently a non-paramatric quantile estimator as described in Takeuchi
et al. (2006). A Gaussian kernel was used and its bandwidth was optimized in the (log)space of

[
10−6, 106]. No

non-crossing was enforced.

S.10.5 Experiments with CSC

In this section we provide numerical illustration concerning the CSC problem. We used the Iris UCI dataset
with 4 attributes and 150 samples, the two synthetic scikit-learn (Pedregosa et al., 2011) datasets Two-
Moons (noise=0.4) and Circles (noise=0.1) with both 2 attributes and 1000 samples and a third synthetic
scikit-learn dataset Toy (class sep=0.5) with 20 features (4 redundant and 10 informative) and n = 1000
samples.

As detailed in Section 2, Cost-Sensitive Classification on a continuum Θ = [−1, 1] that we call Infinite Cost-
Sensitive Classification (∞-CSC) can be tackled by our proposed technique. In this case, the hyperparameter θ
controls the tradeoff between the importance of the correct classification with labels −1 and +1. When θ = −1,
class −1 is emphasized; the probability of correctly classified instances with this label (called specificity) is desired
to be 1. Similarly, for θ = +1, the probability of correct classification of samples with label +1 (called sensitivity)
is ideally 1.

To illustrate the advantage of (infinite) joint learning we used two synthetic datasets Circles and Two-Moons
and the UCI Iris dataset. We chose kX to be a Gaussian kernel with bandwidth σX = (2γX)(−1/2) the median
of the Euclidean pairwise distances of the input points (Jaakkola et al., 1999). kΘ is also a Gaussian kernel with
bandwidth γΘ = 5. We used m = 20 for all datasets. As a baseline we trained independently 3 Cost-Sensitive
Classification classifiers with θ ∈ { −0.9, 0, 0.9 }. We repeated 50 times a random 50 − 50% train-test split of the
dataset and report the average test error and standard deviation (in terms of sensitivity and specificity)

Our results are illustrated in Table S.3. For θ = −0.9, both independent and joint learners give the desired
100% specificity; the joint Cost-Sensitive Classification scheme however has significantly higher sensitivity value
(15% vs 0%) on the dataset Circles. Similar conclusion holds for the θ = +0.9 extreme: the ideal sensitivity
is reached by both techniques, but the joint learning scheme performs better in terms of specificity (0% vs 12%)
on the dataset Circles.

Table S.3: ∞-CSC vs Independent (IND)-CSC. Higher is better.

Dataset Method θ= −0.9 θ= 0 θ= +0.9

sensitivity specificity sensitivity specificity sensitivity specificity

Two-Moons IND 0.3 ± 0.05 0.99 ± 0.01 0.83 ± 0.03 0.86 ± 0.03 0.99 ± 0 0.32 ± 0.06
∞-CSC 0.32 ± 0.05 0.99 ± 0.01 0.84 ± 0.03 0.87 ± 0.03 1 ± 0 0.36 ± 0.04

Circles IND 0 ± 0 1 ± 0 0.82 ± 0.02 0.84 ± 0.03 1 ± 0 0 ± 0
∞-CSC 0.15 ± 0.05 1 ± 0 0.82 ± 0.02 0.84 ± 0.03 1 ± 0 0.12 ± 0.05

Iris IND 0.88 ± 0.08 0.94 ± 0.06 0.94 ± 0.05 0.92 ± 0.06 0.97 ± 0.05 0.87 ± 0.06
∞-CSC 0.89 ± 0.08 0.94 ± 0.05 0.94 ± 0.06 0.92 ± 0.05 0.97 ± 0.04 0.90 ± 0.05

Toy IND 0.51 ± 0.06 0.98 ± 0.01 0.83 ± 0.03 0.86 ± 0.03 0.97 ± 0.01 0.49 ± 0.07
∞-CSC 0.63 ± 0.04 0.96 ± 0.01 0.83 ± 0.03 0.85 ± 0.03 0.95 ± 0.02 0.61 ± 0.04

References

Bauschke, H. H. and P. L. Combettes (2011). Convex analysis and monotone operator theory in Hilbert spaces.
Springer (cit. on pp. 11, 14, 19).

Bousquet, O. and A. Elisseeff (2002). “Stability and generalization.” In: Journal of Machine Learning Research
2, pp. 499–526 (cit. on p. 14).

Breckling, J. and R. Chambers (1988). “M-quantiles.” In: Biometrika 75.4, pp. 761–771 (cit. on p. 19).
Carmeli, C. et al. (2010). “Vector valued reproducing kernel Hilbert spaces and universality.” In: Analysis and

Applications 8 (1), pp. 19–61 (cit. on p. 12).

Infinite Task Learning in RKHSs

Choquet, G. (1969). Cours d’analyse: Tome II. Topologie. Masson et Cie. (cit. on p. 16).
Jaakkola, T., M. Diekhans, and D. Haussler (1999). “Using the Fisher kernel method to detect remote protein

homologies.” In: ISMB. Vol. 99, pp. 149–158 (cit. on p. 21).
Li, Y., Y. Liu, and J. Zhu (2007). “Quantile regression in reproducing kernel Hilbert spaces.” In: Journal of the

American Statistical Association 102.477, pp. 255–268 (cit. on p. 10).
Pedregosa, F. et al. (2011). “Scikit-learn: Machine learning in Python.” In: Journal of Machine Learning Research

12.Oct, pp. 2825–2830 (cit. on p. 21).
Takeuchi, I. et al. (2006). “Nonparametric quantile estimation.” In: Journal of Machine Learning Research 7,

pp. 1231–1264 (cit. on p. 21).
Zhou, D.-X. (2008). “Derivative reproducing properties for kernel methods in learning theory.” In: Journal of

computational and Applied Mathematics 220.1-2, pp. 456–463 (cit. on p. 12).
Ziemer, W. P. (2012). Weakly differentiable functions: Sobolev spaces and functions of bounded variation. Vol. 120.

Springer Science & Business Media (cit. on p. 12).

