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Abstract

In R% it is well-known that cumulants provide an alternative to moments that can achieve the same goals with numerous benefits such as lower variance estimators. In this paper we extend cumulants to reproducing kernel Hilbert spaces (RKHS) using tools from tensor algebras
and show that they are computationally tractable by a kernel trick. These kernelized cumulants provide a new set of all-purpose statistics:; the classical maximum mean discrepancy and Hilbert-Schmidt independence criterion arise as the degree one objects in our general
construction. We argue both theoretically and empirically (on synthetic, environmental, and traffic data analysis) that going beyond degree one has several advantages and can be achieved with the same computational complexity and minimal overhead in our experiments.
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See |2] for other estimators.
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