
Kernelized Cumulants: Beyond Kernel Mean
Embeddings

Patric Bonnier1∗ Harald Oberhauser 1 Zoltán Szabó2
1Mathematical Institute, University of Oxford 2Department of Statistics, London School of Economics

bonnier,oberhauser@maths.ox.ac.uk
z.szabo@lse.ac.uk

Abstract

In Rd, it is well-known that cumulants provide an alternative to moments that can
achieve the same goals with numerous benefits such as lower variance estimators.
In this paper we extend cumulants to reproducing kernel Hilbert spaces (RKHS)
using tools from tensor algebras and show that they are computationally tractable
by a kernel trick. These kernelized cumulants provide a new set of all-purpose
statistics; the classical maximum mean discrepancy and Hilbert-Schmidt indepen-
dence criterion arise as the degree one objects in our general construction. We
argue both theoretically and empirically (on synthetic, environmental, and traffic
data analysis) that going beyond degree one has several advantages and can be
achieved with the same computational complexity and minimal overhead in our
experiments.

Keywords: kernel, cumulant, mean embedding, Hilbert-Schmidt independence criterion, kernel
Lancaster interaction, kernel Streitberg interaction, maximum mean discrepancy, maximum variance
discrepancy

1 Introduction

The moments of a random variable are arguably the most popular all-purpose statistic. However,
cumulants are often more favorable statistics than moments. For example, if µm := E[Xm] denotes
the moments of a real-valued random variable X , then µ2 = µ2

1 +Var(X) and hence the variance
that directly measures the fluctuation around the mean is a much better statistic for scale than the
second moment µ2, see Appendix A. Cumulants provide a systematic way to only record the parts of
the moment sequence that are not already captured by lower-order moments. While the moment and
cumulant sequences (µm)m and (κm)m carry the same information, cumulants have several desirable
properties that generalize to Rd-valued random variables (McCullagh, 2018). Among these properties
of cumulants, the ones that are important for our paper is that they can characterize distributions and
statistical (in)dependence.

Kernel embeddings. Mean and covariance arise naturally in the context of kernel-enriched domains.
Kernel techniques (Schölkopf and Smola, 2002; Steinwart and Christmann, 2008; Saitoh and Sawano,
2016) provide a principled and powerful approach for lifting data points to a so-called reproducing
kernel Hilbert space (RKHS; Aronszajn 1950). Considering the mean of this feature – referred to as
kernel mean embedding (KME; Berlinet and Thomas-Agnan 2004; Smola et al. 2007) – also enables
one to represent probability measures, and to induce a semi-metric referred to as maximum mean
discrepancy (MMD; Smola et al. 2007; Gretton et al. 2012) and an independence measure called the
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Hilbert-Schmidt independence criterion (HSIC1; Gretton et al. 2005). It is known that MMD is a
metric when the underlying kernel is characteristic (Fukumizu et al., 2008; Sriperumbudur et al.,
2010). HSIC captures independence for d = 2 components with characteristic kernels (Lyons, 2013,
Theorem 3.11) and for d > 2 components (Quadrianto et al., 2009; Sejdinovic et al., 2013a; Pfister
et al., 2018) with universal ones (Szabó and Sriperumbudur, 2018). MMD belongs to the family of
integral probability metrics (IPM; Zolotarev 1983; Müller 1997) when in the IPM the underlying
function class is chosen to be the unit ball of the RKHS. MMD and HSIC (with d = 2) are known
to be equivalent (Sejdinovic et al., 2013b) to the notions of energy distance (Baringhaus and Franz,
2004; Székely and Rizzo, 2004, 2005)—also called N-distance (Zinger et al., 1992; Klebanov, 2005)–
and distance covariance (Székely et al., 2007; Székely and Rizzo, 2009; Lyons, 2013) of the statistics
literature. Both MMD and HSIC can be expressed in terms of expectations of kernel values which
can be leveraged to design efficient estimators for them; we will refer to this trick as the expected
kernel trick. A recent survey on mean embedding and their applications is given by Muandet et al.
(2017). The closest previous work to ours is by Makigusa (2020) who considers the variance in the
RKHS – which in our setting can be identified as the first kernelized cumulant after the kernel mean
embedding – for two-sample testing like we do in parts of this paper. Unfortunately, Makigusa (2020)
does not provide conditions on the validity of the resulting maximum variance discrepancy, and it is
not formulated in the context of cumulant embeddings.

Contribution. The main contribution of our paper is to introduce cumulants of random variables
in RKHSs and to show that under mild conditions the proposed kernelized cumulants character-
ize distributions (Theorem 2) and independence (Theorem 3). Thanks to the RKHS formulation,
kernelized cumulants have computable estimators (Lemma 2 and Lemma 3) and they show strong
performance in two-sample and independence testing on various benchmarks (Section 4). Although
cumulants are a classic tool in multi-variate statistics, they have not received attention in the kernel
literature. The primary technical challenge to circumvent in the derivation of fundamental properties
of cumulants is the rich combinatorial structure which already arises in Rd from their definition via
moment-generating function which is closely linked to the partition lattice (Speed, 1983, 1984). In an
RKHS, even the definition of cumulants is non-straightforward. The key insight for our extension is
that the combinatorial expressions for cumulants in Rd can be generalized by using tools from tensor
algebras. This in turn allows us to derive the main properties of the RKHS cumulants that underpin
their statistical properties.

Broader impact & limitations. We do not see any direct negative societal impact arising from the
proposed new set of all-purpose kernel-based divergence and dependence measure. Choosing the
underlying kernels in an optimal fashion—even for MMD in two-sample testing (Hagrass et al., 2022)
or goodness-of-fit testing (Hagrass et al., 2023)—and showing optimal rates—even for MMD with
radial kernels on Rd (Tolstikhin et al., 2016)— are quite challenging problems requiring dedicated
analysis, and are not addressed here.

Outline. The paper is structured as follows: In Section 2 we formulate the notion of cumulants
of random variables in Hilbert spaces. In Section 3 we prove a kernelized version of the classical
result of Rd-valued random variables on the characterization of distributions and independence using
cumulants. We show that one can leverage the expected kernel trick to derive efficient estimators for
our novel statistics, with MMD and HSIC arising specifically as the “degree 1” objects. In Section 4
we demonstrate numerically that going beyond degree 1 is advantageous. We provide a technical
background (on cumulants, tensor products and tensor algebras), proofs, further details on numerical
experiments, and our V-statistic based estimators in the Appendices.

2 Moments and cumulants

We briefly revisit classical cumulants and define cumulants of random variables in Hilbert spaces.

1HSIC is MMD with the tensor product kernel evaluated on the joint distribution and the product of the
marginals, or equivalently HSIC equals to the Hilbert-Schmidt norm of the cross-covariance operator.
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Moments. Let γ be a probability measure on Rd and (X1, . . . , Xd) ∼ γ. The moments µ(γ) =
(µi(γ))i∈Nd of γ are defined as

µi(γ) := E
[
Xi1

1 · · ·Xid
d

]
∈ R, (1)

where i = (i1, . . . , id) ∈ Nd denotes a d-tuple of non-negative integers (i1, . . . , id ≥ 0). The degree
of an element i ∈ Nd is defined as deg(i) := i1+ · · ·+ id. For m ∈ N, let µm(γ) := (µi(γ))deg(i)=m

which we refer to as the m-th moments of γ with the convention that µ0(γ) = 1.

Cumulants. Cumulants κ(γ) = (κi(γ))i∈Nd can be defined by the moment generating function as∑
i∈Nd

κi(γ)
θi

i!
= log

∑
i∈Nd

µi(γ)
θi

i!
, θ = (θ1, . . . , θd) ∈ Rd, (2)

where we denote i! = i1! · · · id! and θi = θi11 · · · θidd ; an equivalent definition of cumulants is via
a combinatorial expression of partitions (elaborated in Appendix C.1). Cumulants have several
attractive properties, the following forms our main motivation.

Theorem 1 (Characterization of distributions with cumulants on Rd, from Proposition 1 in Jammala-
madaka et al. 2006). Let γ be a probability measure on a bounded subset of Rd with cumulants κ(γ)
and let (X1, . . . , Xd) ∼ γ. Then

1. γ 7→ κ(γ) is injective.

2. X1, . . . , Xd are jointly independent if and only if κi(γ) = 0 for all d-tuples of positive integers
i ∈ Nd

+.

2.1 Moments in Hilbert spaces

Instead of directly considering the law of a tuple of random variables (X1, . . . , Xd) in a product
space X1 × · · · × Xd, it can be advantageous to use feature maps Φi : Xi → Hi and instead study
the distribution of the H1 × · · · × Hd-valued random variable

(
Φ1(X1), . . . ,Φd(Xd)

)
. Motivated

by this lifting, we study here moments of Hilbert-space valued random variables and assume in this
subsection (with a slight abuse of notations) that one has already applied the lifting and Xi ∈ Hi

where i = 1, . . . , d. In Section 3 we specialize the construction to RKHSs, and use these moments
(Def. 1) to define kernelized cumulants.

Moments. In the finite-dimensional case (1) we defined the moment sequence by taking expecta-
tions of products of the coordinates of the underlying random variable. For the infinite-dimensional
case, it is convenient to develop a coordinate-free definition which can be accomplished by using
tensors. To do so we make use of the following results about Hilbert spaces: for real Hilbert spaces
H1 and H2 the tensor product H1⊗H2 is the Hilbert space given by completion of the tensor product
of H1 and H2 as vector space; we also write H⊗m

1 : = H1 ⊗ · · · ⊗ H1︸ ︷︷ ︸
m-times

. Similarly, the direct sum

H1 ⊕ H2 is a Hilbert space. It is natural to consider E
[
X⊗m

1

]
∈ H⊗m

1 as the m-th moment of
a H1-valued random variable X1 where the integral in the expectation is meant in Bochner sense.
Consequently the natural state space for all moments of a H1-valued random variable is the tensor
algebra T1 :=

∏
m≥0 H

⊗m
1 where by convention H⊗0

1 := R. See Appendix B for more details on
tensor products of Hilbert spaces and tensor algebras.

Example 2.1 (H1 = Rd, m = 2). If X1 =
(
X1

1 , . . . , X
d
1

)
is H1 = Rd-valued then E

[
X⊗2

1

]
∈

(Rd)⊗2 can be identified with a (d× d)-sized matrix whose (i, j)-th entry is E
[
Xi

1X
j
1

]
.

Since we are interested in the general case of a H1 × · · · × Hd-valued random variable X =
(X1, . . . , Xd) we arrive at the definition below.

Definition 1 (Moments in Hilbert spaces). Let γ be a probability measure on H := H1 × · · · × Hd

and let (X1, . . . , Xd) ∼ γ. We define

µi(γ) := E[X⊗i1
1 ⊗ · · · ⊗X⊗id

d ] ∈ H⊗i, H⊗i := H⊗i1
1 ⊗ · · · ⊗ H⊗id

d (3)

3



for every i ∈ Nd whenever the above expectation exists. The moment sequence is defined as the
element

µ(γ) = (µi(γ))i∈Nd ∈ T := T1 ⊗ · · · ⊗ Td, with Tj :=
∏
m≥0

H⊗m
j ,

and for m ∈ N we refer to µm(γ) =
⊕

i∈Nd:deg(i)=m µi(γ) as the m-moments of γ.

In case of Hi = R, both definitions (1) and (3) apply for µi(γ). Henceforth, we always refer to
(3) when we write µi(γ). Even in the finite-dimensional case, Def. 1 is useful, for instance when
X1 ∈ H1 and X2 ∈ H2 have different state space (H1 ̸= H2).

3 Kernelized cumulants

We lift a random variable X= (X1, . . . , Xd) ∈ X = X1 × · · · × Xd via a feature map Φ : X → H
into a Hilbert space valued random variable Φ(X). For the rest of the paper (i) X1, . . . ,Xd will
denote a collection of Polish spaces, but the reader is invited to think of them as finite-dimensional
Euclidean spaces, (ii) H is an RKHS with kernel k and canonical feature map Φ(x) = k(x, ·),2 and
(iii) all kernels are assumed to be bounded.3 Our main results (Theorem 2 and Theorem 3) are that in
this case the expected kernel trick applies to both items in the kernelized version of Theorem 1. The
key to these results is an expression for inner products of cumulants in RKHSs (Lemma 1).

A combinatorial expression of cumulants. Classical cumulants can be defined via the moment
generating function or via combinatorial sums over partitions (Appendix C.1). To generalize cumu-
lants to RKHSs the combinatorial definition is the most efficient way. A partition π of m elements
is a family of non-empty, disjoint subsets π1, . . . , πb of {1, . . . ,m} whose union is the whole set;
formally

⋃b
j=1 πj = {1, . . . ,m} and πi ∩ πj = ∅ for i ̸= j. We call b the number of blocks of the

partition π and use the shorthand |π| to denote it. The set of all partitions of m is denoted with P (m).
To formulate our main results, it is convenient to associate with a measure γ and a partition π the
so-called partition measure γπ that is given by permuting the marginals of γ.

Definition 2 (Partition measure). Let γ be a probability measure on X1 × · · · × Xd and π ∈ P (d).
Define

γπ := γ|Xπ1
⊗ · · · ⊗ γ|Xπb

,

where Xπi denotes the product space
∏

j∈πi
Xj and γ|Xπi

is the corresponding marginal distribution
of γ. We call γπ the partition measure induced by π.

We also associate with γ and a multi-index i the so-called diagonal measure γi that is given by
repeating marginals according to i.

Definition 3 (Diagonal measure). Let γ be a probability measure on X1 × · · · × Xd and i =
(i1, . . . , id) ∈ Nd. Define

γi := Law(X1, . . . , X1︸ ︷︷ ︸
i1 times

, X2, . . . , X2︸ ︷︷ ︸
i2 times

, . . . , Xd, . . . , Xd︸ ︷︷ ︸
id times

),

where (X1, . . . , Xd) ∼ γ. We call γi the diagonal measure induced by i.

In general, the partition measure γπ and the diagonal measure are not probability measures on
X1 × · · · × Xd but on spaces that are constructed by permuting or repeating X1, . . . ,Xd. Formally,
γπ is a probability measure on Xπ1

× · · · × Xπb
and γi is a probability measure on X i1

1 × · · · × X id
d ;

thus, γπ has d coordinates and γi has deg(i) coordinates. These two constructions can be combined,
writing γi

π for the measure (γi)π which makes sense whenever π ∈ P (deg(i)). We can now write
down our generalization of cumulants.

2k(x, ·) denotes the function x′ 7→ k(x, x′) with x ∈ X fixed.
3A kernel k : X × X → R is called bounded if there exists B ∈ R such that supx,x′∈X k(x, x′) ≤ B.
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Definition 4 (Kernelized cumulants). Let γ be a probability measure on X1 × · · · × Xd and let
(H1, k1), . . . , (Hd, kd) be RKHSs on X1, . . . ,Xd respectively. We define the kernelized cumulants

κk1,...,kd
(γ) :=

(
κi
k1,...,kd

(γ)
)
i∈Nd ∈ T

as follows

κi
k1,...,kd

(γ) :=
∑

π∈P (m)

cπEγi
π
k⊗i((X1, . . . , Xm), ·),

where m = deg(i), cπ := (−1)|π|−1(|π| − 1)!, γi
π = (γi)π and

k⊗i((x1, . . . , xm), (y1, . . . , ym)) := k1(x1, y1) · · · k1(xi1 , yi1) (4)
· · · kd(xm−id+1, ym−id+1) · · · kd(xm, ym)

is the reproducing kernel of H⊗i where H = H1 × · · · × Hd.

Def. 4 is the natural generalization of the combinatorial definition of cumulants in Rd and Appendix
C.2 gives an equivalent definition via a generating function analogous to (2). However, our posthoc
justification that these are the "right" definitions for cumulants in an RKHS are Theorems 2 and 3
that show that these kernelized cumulants have the same powerful properties as classic cumulants in
Rd (Theorem 1).

Example 3.1 (Kernelized cumulants). Let γ be a probability measure on X1 ×X2, with the RKHSs
(H1, k1), (H2, k2) given. Denote the random variables K1 = k1(X1, ·),K2 = k2(X2, ·) where
(X1, X2) ∼ γ. Then the degree two kernelized cumulants are given as κ

(2,0)
k1,k2

(γ) = E
[
K⊗2

1

]
−

E [K1]
⊗2, κ(1,1)

k1,k2
(γ) = E [K1 ⊗K2]− E [K1]⊗ E [K2] , κ

(0,2)
k1,k2

(γ) = E
[
K⊗2

2

]
− E [K2]

⊗2.

Inner products of cumulants. Computing inner products of moments is straightforward thanks to
a nonlinear kernel trick, see Lemma 6 in the Appendix. For example, given two probability measures
γ1, γ2 with corresponding random variables (X1, . . . , Xd) ∼ γ1, (Y1, . . . , Yd) ∼ γ2 on X1×· · ·×Xd

and RKHSs (H1, k1), . . . , (Hd, kd) on X1, . . . ,Xd with bounded kernels, and H = H1 × · · · × Hd,
we can express:

⟨µi
k1,...,kd

(γ1), µ
i
k1,...,kd

(γ2)⟩H⊗i = Eγ1⊗γ2
k1(X1, Y1)

i1 · · · kd(Xd, Yd)
id , (5)

where µi
k1,··· ,kd

is defined in Def. 1, and the expectation is taken over the product measure γ1 ⊗ γ2.

Example 3.2. In the particular case of d = 1, (5) reduces to the well-known formula for the inner
product of mean embeddings ⟨µ(1)

k (γ1), µ
(1)
k (γ2)⟩Hk

= Eγ1⊗γ2
k(X,Y ).

Lemma 1 (Inner product of cumulants). Let (H1, k1), . . . , (Hd, kd) be RKHSs with bounded kernels
on X1, . . . ,Xd respectively, and let γ and η two probability measures on X1 × · · · × Xd, i =
(i1, . . . , id) ∈ Nd such that deg(i) = m. Then

⟨κi
k1,...,kd

(γ), κi
k1,...,kd

(η)⟩H⊗i =
∑

π,τ∈P (m)

cπcτEγi
π⊗ηi

τ
k⊗i((X1, . . . , Xm), (Y1, . . . , Ym)).

Point separating kernels. In the classic MMD setting the injectivity of the mean embedding
γ 7→ EX∼γ [k(X, ·)] on probability measures (known as the characteristic property of the kernel
k) is equivalent to the MMD being a metric; this property is central in applications. We formulate
our theoretical results in the next section using the much weaker property of what we term “point-
separating” which is satisfied for essentially all popular kernels.

Definition 5 (Point-separating kernel). We call a kernel k : X × X → R point-separating if the
canonical feature map Φ : x 7→ k(x, ·) is injective.

3.1 (Semi-)metrics for probability measures

In this section we use cumulants to characterize probability measures and show how to compute the
distance between kernelized cumulants with the expected kernel trick.
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Theorem 2 (Characterization of distributions with cumulants). Let γ and η be two probability
measures on X1 × · · · × Xd, (H1, k1), . . . , (Hd, kd) RKHSs on the Polish spaces X1, . . . ,Xd such
that for every 1 ≤ j ≤ d kj is a bounded, continuous, point-separating kernel. Then

γ = η if and only if κk1,...,kd
(γ) = κk1,...,kd

(η).

Moreover, the expected kernel trick applies and for i ∈ Nd with deg(i) = m, and k⊗i and H⊗i as in
(4)

di(γ, η) := ∥κi
k1,...,kd

(γ)− κi
k1,...,kd

(η)∥2H⊗i (6)

=
∑

π,τ∈P (m)

cπcτ

[
Eγi

π⊗γi
τ
k⊗i((X1, . . . , Xm), (Y1, . . . , Ym))

+ Eηi
π⊗ηi

τ
k⊗i((X1, . . . , Xm), (Y1, . . . , Ym))

− 2Eγi
π⊗ηi

τ
k⊗i((X1, . . . , Xm), (Y1, . . . , Ym))

]
.

We recall Example 3.1 and now give examples of distances between such expressions

Example 3.3 (m = 1). Applied with m = 1 and d = 1, (6) becomes MMD2
k(γ, η)

∥κ(1)
k (γ)− κ

(1)
k (η)∥2Hk

= Ek(X,X ′) + Ek(Y, Y ′)− 2Ek(X,Y ),

where X,X ′ denotes independent copies of γ and Y, Y ′ denotes independent copies of η.
Example 3.4 (m = 2). For m = 2 and d = 1, (6) reduces to

∥κ(2)
k (γ)− κ

(2)
k (η)∥2H(1,1) = Ek(X,X ′)k(X ′′, X ′′′) + Ek(Y, Y ′)k(Y ′′, Y ′′′) + Ek(X,X ′)2

+Ek(Y, Y ′)2 + 2Ek(X,Y )k(X ′, Y ) + 2Ek(X,Y )k(X,Y ′)− 2Ek(X,Y )k(X ′, Y ′)

−2Ek(X,Y )2 − 2Ek(X,X ′)k(X,X ′′)− 2Ek(Y, Y ′)k(Y, Y ′′),

where X,X ′, X ′′, X ′′′ denotes independent copies of γ and Y, Y ′, Y ′′, Y ′′′ denotes independent
copies of η. This expression compares the variances in the RKHS instead of the means. This is an
example of the kernel variance embedding defined in the next subsection.

The price for the weak assumption of a point-separating kernel is that without any stronger assump-
tions one does not get a metric in general, and the all-purpose way to achieve a metric is to take
an infinite sum over all di’s. If we only use the degree m = 1 term di reduces to the well-known
MMD formula which requires characteristicness to become a metric (see Example 3.3). There are
two reasons why working under weaker assumptions is useful: firstly, if the underlying kernel is not
characteristic this sum gives a structured way to incorporate finer information that discriminates the
two distributions; an extreme case is the linear kernel k(x, y) = ⟨x, y⟩ which is point-separating, and
in this case the sum reduces to the differences of classical cumulants. Secondly, under the stronger
assumption of characteristicness one already has a metric after truncation at degree m = 1 (the
classical MMD). However, in the finite-sample case adding higher degree terms can lead to increased
power. Indeed, our experiments (Section 4) show that even just going one degree further (i.e. taking
m = 2), can lead to more powerful tests.

3.2 A characterization of independence

Here we characterize independence in terms of kernelized cumulants.
Theorem 3 (Characterization of independence with cumulants). Let γ be a probability measure on
X1 × · · · × Xd, and (H1, k1), . . . , (Hd, kd) RKHSs on Polish spaces X1, . . . ,Xd such that for every
1 ≤ j ≤ d kj is a bounded, continuous, point-separating kernel. Then

γ = γ|X1 ⊗ · · · ⊗ γ|Xd
if and only if κi

k1,...,kd
(γ) = 0

for every i ∈ Nd
+. Moreover, the expected kernel trick applies in the sense that for i ∈ Nd

+

∥κi
k1,...,kd

(γ)∥2H⊗i =
∑

π,τ∈P (m)

cπcτEγi
π⊗γi

τ
k⊗i((X1, . . . , Xm), (Y1, . . . , Ym)), (7)

where m := deg(i), and k⊗i and H⊗i are defined as in (4).
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Applied to i = (1, 1), the expression (7) reduces to the classical HSIC for two components, see
Example 3.5 below. But for general i this construction leads to genuine new statistics in RKHSs.

Example 3.5 (Specific case: HSIC, kernel Lancaster interaction, kernel Streitberg interaction). If
d = 2 there is only one order 2 index in Nd

+, namely i = (1, 1); in this case (7) reduces to the
classical HSIC equation

∥κ(1,1)
k1,k2

(γ)∥2H(1,1)= Ek1(X,Y )k2(X,Y ) + Ek1(X,Y )k2(X
′, Y ′)− 2Ek1(X,Y )k2(X

′, Y ),

where (X,Y ) and (X ′, Y ′) are independent copies of the same random variable following γ. More
generally, with i = 1d one gets the kernel Streitberg interaction (Streitberg, 1990; Sejdinovic et al.,
2013a; Liu et al., 2023), and specifically the kernel Lancaster interaction (Sejdinovic et al., 2013a)
for d ∈ {2, 3}; the latter reduces to HSIC for two random variables (d = 2).

3.3 Finite-sample statistics

To apply Theorem 2 and Theorem 3 in practice, one needs to estimate expressions such as
Ek⊗i((X1, . . . , Xm), (Y1, . . . , Ym)). One could use classical estimators such as U-statistic (Van der
Waart, 2000) which lead to unbiased estimators. However, we follow Gretton et al. (2008) and use a
V-statistic which is biased but conceptually simpler, easier, and efficient to compute. We note that the
estimators presented here all have quadratic complexity like MMD and HSIC, see Appendix E.

A two-sample test for non-characteristic feature maps. If k is characteristic then MMDk(γ, η) =
0 exactly when γ = η, but we can still increase testing power by considering the distance between
the kernel variance and skewness embeddings, which leads us to use our semi-metrics d(2)(γ, η)
and d(3)(γ, η) as defined in (6). An efficient estimator for d(3) is given in detail in Appendix E; we
provide the full expression for d(2) here.

Lemma 2 (d(2) estimation, see (6)). The V-statistic for d(2)(γ, η) = ∥κ(2)
k (γ)− κ

(2)
k (η)∥2H(1,1) is

1

N2
Tr
[
(KxJN )2

]
+

1

M2
Tr
[
(KyJM )2

]
− 2

NM
Tr
[
KxyJMK⊤

xyJN

]
,

where Tr denotes trace, (xn)
N
n=1

i.i.d.∼ γ, (ym)Mm=1
i.i.d.∼ η, Kx = [k(xi, xj)]

N
i,j=1 ∈ RN×N ,

Ky = [k(yi, yj)]
M
i,j=1 ∈ RM×M , Kx,y = [k(xi, yj)]

N,M
i,j=1 ∈ RN×M , Jn = In − 1

n1n1
⊤
n ∈ Rn×n,

with 1n = (1, . . . , 1) ∈ Rn.

A kernel independence test. By Theorem 3, if γ = γ|X1
⊗ γ|X2

, then κ(2,1)(γ) = 0 and
κ(1,2)(γ) = 0. We may compute the magnitude of either κ(2,1)(γ) or κ(1,2)(γ) – we will refer to these
quantities as cross skewness independence criterion (CSIC). Note that these criteria are asymmetric.
When d = 2 we have a probability measure γ on X1 ×X2 and two kernels k : X 2

1 → R, ℓ : X 2
2 → R.

Assume that we have samples (xi, yi)
N
i=1 and use the shorthand notation K = Kx,L = Ly (similarly

to Lemma 2) and H = HN = 1
N 1N1⊤

N ∈ RN×N . Denote by ◦ the Hadamard product and ⟨·⟩ the
sum over all elements of a matrix. Then one can derive the following CSIC estimator.(Note that
matrix multiplication takes precedence over the Hadamard product.)

Lemma 3 (CSIC estimation). The V-statistic for ∥κ(1,2)
k,ℓ (γ)∥2H⊗1

k ⊗H⊗2
ℓ

is

1

N2

〈
K ◦K ◦ L− 4K ◦KH ◦ L− 2K ◦K ◦ LH+ 4KH ◦K ◦ LH

+ 2K ◦ L
〈

K

N2

〉
+ 2KH ◦HK ◦ L+ 4K ◦HK ◦ LH+K ◦K

〈
L

N2

〉
− 8K ◦ LH

〈
K

N2

〉
− 4K ◦HK

〈
L

N2

〉
+ 4

〈
K

N2

〉2

L

〉
.

Remark (computational complexity w.r.t. degree m). We saw that the computational complexity
of the cumulant based measures is quadratic w.r.t. the sample size. Let Bm = |P (m)| be the m-th
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Bell number, in other words the number of elements in P (m). The Bell numbers follow a recursion:
Bm+1 = |P (m+ 1)| =

∑m
k=0

(
m
k

)
Bk, with the first elements of the sequence being B0 = B1 = 1,

B2 = 2, B3 = 5, B4 = 15, B5 = 52. By (6)-(7), in the worst case the number of operations to
compute di(γ, η) or ∥κi

k1,...,kd
(γ)∥2H⊗i (m = deg(i)) is proportional to B2

m (it equals to 3B2
m and to

B2
m, respectively). Though asymptotically Bm grows quickly (de Bruijn, 1981; Lovász, 1993), for

reasonably small degrees the computation is still manageable. In addition, merging various terms in
the estimator can often be carried out, which leads to computational saving. For instance, the estimator
of d(2) (see Lemma 2, Example E.1), CSIC (Lemma 3, Example E.2) and d(3) (Example E.3) consists
of only 3, 11 and 10 + 2× 7 = 24 terms compared to the predicted worst-case setting of 3B2

2 = 12,
B2

3 = 25, and 3B2
3 = 75 terms, respectively. On a practical side, we found that using m ∈ {2, 3} is

a good compromise between gain in sample efficiency and ease of implementation.

4 Experiments

In this section, we demonstrate the efficiency of the proposed kernel cumulants in two-sample and
independence testing.4

• Two-sample test: Given N −N samples from two probability measures γ and η on a space X , the
goal was to test the null hypothesis H0 : γ = η against the alternative H1 : γ ̸= η. The compared
test statistics (S) were MMD, d(2), and d(3).

• Independence test: Given N paired samples from a probability measure γ on a product space
X1 × X2, the aim was to the test the null hypothesis H0 : γ = γ1 ⊗ γ2 against the alternative
H1 : γ ̸= γ1 ⊗ γ2. The compared test statistics (S) were HSIC and CSIC.

In our experiments H1 held, and the estimated power of the tests is reported. Permutation test was
applied to approximate the null distribution and its 0.95-quantile (which corresponds to the level
choice α = 0.05): We first computed our test statistic S using the given samples (S0 = S), and then
permuted the samples 100 times. If S0 was in a high percentile (≥ 95% in our case) of the resulting
distribution of S under the permutations, we rejected the null. We repeated these experiments 100
times to estimate the power of the test. This procedure was in turn repeated 5 times and the 5 samples
are plotted as a box plot along with a line plot showing the mean against the number of samples

(N) used. All experiments were performed using the rbf-kernel rbfσ(x,y) = e−
∥x−y∥22

2σ2 , where the
parameter σ is called the bandwidth. We performed all experiments for every bandwidth of the form
σ = a10b where a = 1, 2.5, 5, 7.5 and b = −5,−4,−3,−2,−1, 0 and the optimal value across the
bandwidths was chosen for each method and sample size. The experiments were carried out on a
laptop with an i7 CPU and 16GBs of RAM.

4.1 Synthetic data

For synthetic data we designed two experiments.

• 2-sample test: We compared a uniform distribution with a mixture of two uniforms.

• Independence test: We considered the joint measure of a uniform and a correlated χ2 random
variable. We also use this same benchmark to compare the efficiency of classical and kernelized
cumulants in Appendix D.

Comparing a uniform with a mixture of uniforms. Even for simpler distributions like mixtures
of uniform distributions it can be hard to pick up higher-order features, and d(2) can outperform
MMD even when provided with a moderate number of samples. Here we compared one uniform
distribution U [−1, 1] with an equal mixture of U [0.35, 0.778] and U [−0.35,−0.778]. The endpoints
in the mixture were chosen to match the first three moments of U [−1, 1]. The number of samples
used ranged from 5 to 50, and the results are summarized in Fig. 1. One can see that with d(2) the
power approaches 100% much faster than with using MMD.

4All the code replicating our experiments is available at https://github.com/PatricBonnier/
Kernelized-Cumulants.
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Figure 2: Test power as a function of the sample
size (N ) of independence testing using HSIC (red)
and CSIC statistics (blue), with the independence
testing between Y 2

0.5 and X .
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Figure 3: Two-sample testing using MMD (red)
and d(2) (blue) on the Seoul bicycle data set.
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Figure 1: Test power as a function of the sam-
ple size (N ) of two-sample test using the MMD
(red) and d(2) statistics (blue), with U [−1, 1]
and an equal mixture of U [0.35, 0.778] and
U [−0.35,−0.778] compared.

Independence between a uniform and a χ2.
Let X ∼ U [0, 1] and Z ∼ N(0, 1) be indepen-
dent of X . Denote by Φ the c.d.f. of a standard
normal distribution and define Yp to be a mixture
with weight p at Φ−1(X) and weight 1− p at Z
so that Y0 = Z and Y1 = Φ−1(X). We test for
independence for p = 0.5 between Y 2

p —which
will be χ2 distributed with 1 degree of freedom–
and X . As the statistical dependence of Y 2

p and
X is more complicated than a simple correlation
we expect that higher-order features of the data
will help in the independence testing. The num-
ber of samples used ranged from 6 to 60, with
the results summarized in Fig. 2. One can see
that CSIC supersedes HSIC for every sample
size, and the difference is more pronounced for
smaller ones.

4.2 Real-world data

We demonstrate the efficiency of the kernelized cumulants on real-world data. We designed two
experiments.

• 2-sample test: Here the goal was to test if environmental data in two different seasons, and traffic
data at different speeds can be distinguished.

• independence test: The aim was to test if two distributions describing traffic flow and other traffic
factors are independent.

To improve performance of both test statistics, all features are standardized to lie between 0 and 1.

Seoul bicycle data. The Seoul bicycle data set (E et al., 2020) consists of environmental data
along with the number of bicycle rentals. The environmental data consists of 9 numerical values, 1
categorical value (season), and two binary values. We compare the distribution of the environmental
data in the winter and the fall, as we expect these distributions to be different. Concretely, we do
2-sample testing on two measures γ, η on R11, and assume that γ ̸= η where γ is the distribution
of the environmental data in winter, and η is that of the data in the fall. Permutation testing was
performed for N between 4 and 44, with results summarized in Fig. 3. As it can be observed that d(2)
outperforms MMD in terms of test power. For the Type I error, i.e. the probability of falsely rejecting
the null hypothesis (comparing winter data with itself), it hovers between 5− 10% for both statistics,
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Figure 4: Independence testing using HSIC (red)
and CSIC (blue) on the Sao Paulo traffic dataset.
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Figure 5: Two-sample testing using MMD (red)
and d(3) (blue) on the Sao Paulo traffic dataset.

which is admittedly slightly higher than the desired 5% due to the small sample size, but very similar
for both statistics; for further details, the reader is referred to Fig. 8 in Appendix D.

Brazilian traffic data. We used the Sao Paulo traffic benchmark (Ferreira, 2016) to perform
independence testing. The dataset consists of 16 different integer-valued statistics about the hourly
traffic in Sao Paulo such as blockages, fires and other reasons that might hold up traffic. This is
combined with a number that describes the slowness of traffic at the given hour; so X1 = R16,
X2 = R. One expects a strong dependence between the two sets—or equivalently, for the null
hypothesis to be false—and for the statistics are heavily skewed towards 0 as it is naturally sparse.
For independence testing we performed permutation testing for N between 4 and 40. The resulting
test powers are summarized in Fig. 4. As it can be seen, HSIC and CSIC performs similarly for very
low sample sizes, but for anything else CSIC is the favorable statistic in terms of test power. For
two-sample testing, we sampled N between 5 and 50 and compared the distribution of slow moving
traffic with the fast moving traffic. The results are summarized in Fig. 5. It is clear that d(3) performs
similarly to MMD in terms of test power for very small sample sizes, but significantly better for
larger ones.

5 Conclusion

We defined cumulants for random variables in RKHSs by extending the algebraic characterization
of cumulants on Rd. This construction results in a structured description of the law of random
variables that goes beyond the classic kernelized mean and covariance. A kernel trick allows us to
compute the resulting kernelized cumulants. We applied our theoretical results to two-sample and
independence testing; although kernelized mean and covariance are sufficient for this task, the higher-
order kernelized cumulants have the potential to increase the test power and to relax the assumptions
on the kernel. Our experiments on real and synthetic data show that kernelized cumulants can indeed
lead to significant improvement of the test power. A disadvantage of these higher-order statistics is
that their theoretical analysis requires more mathematical machinery although we emphasize that the
resulting estimators are simple V-statistics.
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These appendices provide additional background and elaborate on some of the finer points in the main
text. In Appendix A we illustrate that cumulants have typically lower variance estimators compared
to moments. Technical background on tensor products and tensor sums of Hilbert spaces, and on
tensor algebras is provided in Appendix B. We present our proofs in Appendix C. In Appendix D
additional details on our numerical experiments are provided. Our V-statistic based estimators are
detailed in Appendix E.

A Moments and cumulants

Already for real-valued random variable X , moments have well-known drawbacks that make cumu-
lants often preferable as statistics. For a detailed introduction to the use of cumulants in statistics we
refer to McCullagh (2018). Here we just mention that

1. the moment generating function f(t) = E[etX ] =
∑

m µmtm/m! describes the law of X with
sequence (µm) of moments µm = E[Xm] ∈ R. However, since the function t 7→ f(t) is the
expectation of an exponential, one would often expect that f is also "exponential in t", hence
g(t) = log f(t) =

∑
m κm

tm

m! should be simpler to describe as a power series. For example, for

a Gaussian f(t) = etE(X)+ t2

2 V ar(X) and while µm can be in this case explicitly calculated and
uneven moments vanish, the m-moments are fairly complicated compared to the power series
expansion of g(t) = κ1t+ κ2

t2

2 which just consists of κ1 (mean) and κ2 (variance).

2. In the moment sequence µm, lower moments can dominate higher moments. Hence, a natural idea
to compensate for these "different scales" is to systematically subtract lower moments from higher
moments. As mentioned in the introduction, this is in particular troublesome if finite samples are
available. Even in dimension d = 1 the second moment is dominated by the squared mean, that is
for a real-valued random variable X ∼ γ

µ2(γ) = (µ1(γ))2 +Var(X),

where Var(X) := E[(X − µ1(γ))2]. It is well known that the minimum variance unbiased
estimators for the variance are more efficient than that for the second moment: denoting them by
µ̂2 and κ̂ respectively, one can show (Bonnier and Oberhauser, 2020) that given N samples from
X , the following holds

Var
(
µ̂2
)
= Var (κ̂) +

2

N

[
(EX)4 − (EX)2 Var(X)− 2

Var(X)2

N − 1

]
.

This means that when X has a large mean, it is more efficient to estimate its variance than its
second moment since the last term in the above expression dominates. Hence, the variance Var(X)
is typically a much more sensible second-order statistic than µ2(γ). However, we emphasize that
there are many other reasons why cumulants can have better properties as estimators

3. Cumulants characterize laws and the independence of two random variables manifests itself simply
as vanishing of cross-cumulants. In view of the above item 2, this means for example that testing
independence can be preferable in terms of vanishing cumulants rather than testing if moments
factor E[XmY n] = E[Xm]E[Xn], and similarly for testing if distributions are the same.

The caveat to the above points is that it is not true that cumulants are always preferable. For example,
there are distributions for which (a) the moment generating function is not naturally exponential in t,
(b) lower moments do not dominate higher moments, (c) consequently independence or two-sample
testing become worse with cumulants. While one can write down conditions under which for example,
the variance of the kernelized cumulants is lower, the use of cumulants among statisticians is to
simply regard cumulants as arising from natural motivations which leads to another estimator in their
toolbox.

The main idea of our paper is simply that for the same reasons that cumulants can turn out to be
powerful for real or vector-valued random variables, cumulants of RKHS-valued random variables are
a natural choice of statistics. The situation is more complicated since it requires formalizing moment-
and cumulant-generating functions in RKHS but ultimately a kernel trick allows for circumventing
the computational bottleneck of working in infinite dimensions and leads to computable estimators
for independence and two-sample testing.
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Further, we note that although cumulants are classic for vector-valued data, there seems to be not
much work done about extending their properties to general structured data. Our kernelized cumulants
apply to any set X where a kernel is given. This includes many practically relevant examples such as
strings (Lodhi et al., 2002), graphs (Kriege et al., 2020), or general sequentially ordered data (Király
and Oberhauser, 2019; Chevyrev and Oberhauser, 2022); a survey of kernels for structured data is
provided by Gärtner (2003).

B Technical background

In Section B.1 the tensor products (
⊗d

j=1 Hj) and direct sums of Hilbert spaces (
⊕

i∈I Hi) are
recalled. Section B.2 is about tensor algebras over Hilbert spaces (

∏
m≥0 H⊗m).

B.1 Tensor products and direct sums of Banach and Hilbert spaces

Tensor products of Hilbert spaces. For Hilbert spaces H, . . . ,Hd and (h1, . . . , hd) ∈ H1 × · · · ×
Hd, the multi-linear operator h1 ⊗ · · · ⊗ hd ∈ H1 ⊗ · · · ⊗ Hd is defined as

(h1 ⊗ · · · ⊗ hd)(f1, . . . , fd) =

d∏
j=1

⟨hj , fj⟩Hj

for all (f1, . . . , fd) ∈ H1 × · · · × Hd. By extending the inner product

⟨a1 ⊗ · · · ⊗ ad, b1 ⊗ · · · ⊗ bd⟩H1⊗···⊗Hd
:=

d∏
j=1

⟨aj , bj⟩Hj

to finite linear combinations of a1 ⊗ · · · ⊗ ad-s{
n∑

i=1

ci ⊗d
j=1 ai,j : ci ∈ R, ai,j ∈ Hj , n ≥ 1

}
by linearity, and taking the topological completion one arrives at H1 ⊗ · · · ⊗ Hd. Specifically, if
(H1, k1), . . . , (Hd, kd) are RKHSs, then so is H1 ⊗ · · · ⊗ Hd = H⊗d

j=1kj
(Berlinet and Thomas-

Agnan, 2004, Theorem 13) with the tensor product kernel

(
⊗d

j=1 kj
)
((x1, . . . , xd) , (x

′
1, . . . , x

′
d)) :=

d∏
j=1

kj
(
xj , x

′
j

)
,

where (x1, . . . , xd), (x
′
1, . . . , x

′
d) ∈ X1 × · · · × Xd.

Tensor products of Banach spaces. For Banach spaces B1, . . .Bd, the construction of B1⊗· · ·⊗Bd

is a little more involved (Lang, 2002) as one cannot rely on an inner product.

Direct sums of Hilbert and Banach spaces. Let (Hi)i∈I be Hilbert or Banach spaces where
I is some index set. The direct sum of Hi-s— written as

⊕
i∈I Hi—consists of ordered tuples

h = (hi)i∈I such that hi ∈ Hi for all i ∈ I and hi = 0 for all but a finite number of i ∈ I .
Operations (addition, scalar multiplication) are performed coordinate-wise, and the inner product of
a, b ∈

⊕
i∈I Hi is defined as ⟨a, b⟩⊕

i∈I Hi
=
∑

i∈I aibi.

B.2 Tensor algebras

The tensor algebra Tj over a Hilbert space Hj is defined as the topological completion of the space⊕
m≥0

H⊗m
j .
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Note that it can equivalently be defined as the subset of (h0, h1, h2, . . .) ∈
∏

m≥0 H
⊗m
j such that∑

m≥0∥hm∥2H⊗m
j

< ∞, and as such it is a Hilbert space with norm

∥(h0, h1, h2, . . .)∥2∏
m≥0 H⊗m

j

=
∑
m≥0

∥hm∥2H⊗m
j

.

Tj is also an algebra, endowed with the tensor product over Hj as its product. For a =
(a0, a1, a2, a2 . . .), b = (b0, b1, b2, b2 . . .) ∈ Tj , their product can be written down in coordinates as

a · b =

(
m∑
i=0

ai ⊗ bm−i

)
m≥0

.

For a sequence H1, . . . ,Hd of Hilbert spaces, we define

T := T1 ⊗ · · · ⊗ Td,

where Tj =
∏

m≥0 H
⊗m
j (j = 1, . . . , d). Let H = H1 × · · · × Hd, and recall that given a tuple of

integers i = (i1, . . . , id) ∈ Nd we define H⊗i := H⊗i1
1 ⊗ · · · ⊗ H⊗id

d . This allows us to write down
a multi-grading for T as

T =
∏
i∈Nd

H⊗i. (8)

Note that this gives credence to us using multi-indices i ∈ Nd to describe elements of the tensor
algebra, as the multi-indices form its multi-grading.

Furthermore, T is a multi-graded algebra when endowed with the (linear extension of the) following
multiplication defined on the components of T

⋆ : H⊗i1 ×H⊗i2 → H⊗(i1+i2), (9)
(x1 ⊗ · · · ⊗ xd) ⋆ (y1 ⊗ · · · ⊗ yd) = (x1 · y1)⊗ · · · ⊗ (xd · yd),

so that for a =
(
ai
)
i∈Nd , b =

(
bi
)
i∈Nd ∈ T, their product can be written down as

(a ⋆ b)i =
∑

i1+i2=i

ai
1

⋆ bi
2

(10)

where addition of tuples i1, i2 ∈ Nd is defined as i1 + i2 =
(
i11 + i21, . . . , i

1
d + i2d

)
. With the degree

of a tuple defined as deg(i) = i1 + · · · + id, T is also a graded algebra, with the grading written
down as

T =
∏
m≥0

⊕
{i∈Nd:deg(i)=m}

H⊗i,

so that if one multiplies two elements together, the degree of their product is the sum of their degree.

Finally we note that T is a unital algebra and the unit has the explicit form

(1, 0, 0, . . .),

i.e. the element consisting of only a 1 at degree 0.

C Proofs

This section is dedicated to proofs. The equivalence between the combinatorial expressions of
cumulants and the definition via a moment generating function is proved in Section C.2. The
derivation of our main results (Theorem 2 and Theorem 3) are detailed in Section C.3.
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C.1 Equivalent definitions of cumulants in Rd

Here we introduce a classical definition of cumulants via a moment generating function and its
equivalence to the combinatorial expressions. If X = (X1, . . . , Xd) is an Rd-valued random variable
distributed according to X ∼ γ, then recall that

µi(γ) = E[Xi1
1 · · ·Xid

d ] ∈ R

for i = (i1, . . . , id) ∈ Nd.

The following definition of the cumulants κi(γ) of γ are equivalent

1.
∑

i∈Nd κi(γ)θ
i

i! = log
∑

i∈Nd µi(γ)θ
i

i! ,

2. κi(γ) =
∑

π∈P (d)

cπµ
i(γi

π),

where θ = (θ1, . . . , θd) ∈ Rd, cπ = (−1)|π|(|π|−1)!. The equivalence between these two definitions
of cumulants via a generating function and via their combinatorial definition, is classical (McCullagh,
2018) even if our notation here is non-standard in the classical case. This equivalence is also at the
heart of many proofs about properties of cumulants since some properties are easier to prove via one
or the other definition.

C.2 Equivalent definitions of cumulants in RKHS

In the main text, we defined cumulants in RKHS by mimicking the combinatorial definition of
cumulants in Rd. It is natural and useful to also have the analogous definition via a "generating
function" for RKHS-valued random variables. However, to generalize the definition via the logarithm
of the moment generating function to random variables in RKHS, requires to define a logarithm
for tensor series of moments. In this part, we show that this can be done and that indeed the two
definitions are equivalent.

We use the shorthand κ(γ) := κk1,...,kd
(γ), µ(γ) := µk1,...,kd

(γ), and we overload the notation
(X1, . . . , Xd) with (k1(·, X1), . . . , kd(·, Xd)). With this notation, we show that given coordinates
i ∈ Nd, one may express the generalized cumulant κi(γ) as either a combinatorial sum over moments
indexed by partitions, or by using the cumulant generating function.

More specifically, we show that the generalized cumulant of a probability measure γ on H1×· · ·×Hd

defined as

κi(γ) =
∑

π∈P (m)

cπEγi
π
(X⊗i),

where cπ = (−1)|π|−1(|π| − 1)! can also be expressed as coordinates in the tensorized logarithm of
the moment series. Motivated by the Taylor series expansion of the classic logarithm, we define

log : T → T, x 7→
∑
n≥1

(−1)n−1

n
(x− 1)⋆n,

where ⋆ denotes the product as defined in (9) and for t ∈ T, t⋆n is defined as

t⋆n = t ⋆ · · · ⋆ t︸ ︷︷ ︸
n - times

,

or coordinate-wise (t⋆n)i =
∑

i1+···+in=i t
i1 ⋆ · · · ⋆ tin for i ∈ Nd. Note that unlike the classical

logarithm log : R+ → R, the tensorized logarithm is defined on the whole space as a formal
expression. This can be summarized in the following lemma:

Lemma 4.

κi(γ) =
∑

π∈P (m)

cπEγi
π
(X⊗i) =

(
logµ(γi)

)1m
, (11)

where 1m = (1, . . . , 1) ∈ Nm.
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By iterating (10) we can express (11) as

m∑
j=1

(−1)j−1

j

∑
i1+···+ij=1m

µi1(γi) ⋆ · · · ⋆ µij (γi),

and our goal is to express this as a sum over partitions. We will use the notation [n] = {1, . . . , n}.
We can achieve our goal in two parts:

1. Show that for a fixed i ∈ Nd with deg(i) = m we can express (11) as a sum over all surjective
functions from [m] to [j].

2. Show that this sum over functions reduces to a sum over partitions.

Part 1. Note that given i1+ · · ·+ ij = 1m we may define h : [m] → [j] by the relation (ih(n))n = 1,
that is, we take h(n) to be the index c for which the multi-index ic is 1 at n. Note that this function
is necessarily surjective since the sum is taken over non-zero multi-indices. Equivalently, for any
surjective function h : [m] → [j] we may define multi-indices by setting

(ic)n =

{
1 if n ∈ h−1(c)

0 otherwise
.

Note that any such multi-index will be non-zero since the function is assumed to be surjective. With
this identification we can write(

logµ(γi)
)1m

=

m∑
j=1

(−1)j−1

j

∑
h:[m]→[j]

µih
−1(1)

(γi) ⋆ · · · ⋆ µih
−1(j)

(γi).

Part 2. Recall that given a function h : [m] → [j] we can associate it to its corresponding
partition πh ∈ P(m) by considering the set {h−1(1), . . . , h−1(j)}, and there are exactly j! different
functions corresponding to a given partition, which are given by re-ordering the values 1, . . . , j.
This reordering of the blocks does not change the summands since the marginals of the partition
measure are always copies of each other and hence self-commute, hence a product of moments like

µih
−1(1)

(γi) ⋆ · · · ⋆ µih
−1(j)

(γi) can always be written as µi(γi
πh
), the i-th coordinate of the moment

sequence of the partition measure γi
πh

. With this in mind we can write

(
logµ(γi)

)1m
=

m∑
j=1

(−1)j−1

j

∑
h:[m]→[j]

µi(γi
πh
) =

∑
π∈P (m)

(−1)|π|−1

|π|
|π|!µi(γi

π)

=
∑

π∈P (m)

cπµ
i(γi

π) =
∑

π∈P (m)

cπEγi
π
(X⊗i).

From this it immediately follows that for two probability measures γ, η we can write

⟨κi(γ), κi(η)⟩H⊗i = ⟨
∑

π∈P (m)

cπEγi
π
(X⊗i),

∑
τ∈P (m)

cτEηi
τ
(Y ⊗i)⟩H⊗i

=
∑

π,τ∈P (m)

cπcτE(X,Y )∼γi
π⊗ηi

τ
⟨X⊗i, Y ⊗i⟩H⊗i .

Lemma 1 then follows from the definition of the tensor products.

C.3 Proof of Theorem 2 and Theorem 3

In this section we present the proofs of Theorem 2 and Theorem 3. We do this in a slightly more
abstract setting where the feature maps take values in Banach spaces for clarity, until the end when
we again restrict our attention to RKHSs. We start out by showing that polynomial functions of the
feature maps characterize measures (Lemma 5). From this result we show that cumulants have the
same property (Theorem 4), and lastly that this also holds when working directly with the kernels
(Proposition 1).

18



A monomial on separable Banach spaces B1, . . . ,Bd is any expression of the form

M(x1, . . . , xd) =

i1∏
j=1

⟨f1
j , x1⟩ · · ·

id∏
j=1

⟨fd
j , xd⟩

for some (i1, . . . , id) ∈ Nd, where f i
j ∈ B⋆

i are elements of the dual space B⋆
i and xi ∈ Bi.5 Finite

linear combinations of monomials are called the polynomials. Recall that a set of functions F on a set
S is said to separate the points of S if for every x ̸= y ∈ S there exists f ∈ F such that f(x) ̸= f(y).
Lemma 5 (Polynomial functions of feature maps characterize probability measures). Let X1, . . . ,Xd

be Polish spaces, B1 . . . ,Bd separable Banach spaces and φi : Xi → Bi be continuous, bounded,
and injective functions. Then the set of functions on the Borel probability measures P

(∏d
i=1 Xi

)
of∏d

i=1 Xi

P

(
d∏

i=1

Xi

)
→ R, γ 7→

∫
∏d

i=1 Xi

p
(
φ1(x1), . . . , φd(xd)

)
dγ(x1, . . . , xd),

where p ranges over all polynomials, separates the points of P
(∏d

i=1 Xi

)
.

Proof. We first show that the pushforward map

d∏
i=1

φi : P

(
d∏

i=1

Xi

)
→ P

(
d∏

i=1

Bi

)

is injective. This is done in two parts, first we show that every Borel measure on
∏d

i=1 Xi is a Radon
measure, then we show that the pushforward map is injective on Radon measures. To see the first
part, note that since X1, . . . ,Xd are Polish spaces, so is their product space

∏d
i=1 Xi (Dudley 2004,

Theorem 2.5.7; Willard 1970, Theorem 16.4c), and since Borel measures on Polish spaces are Radon
measures (Bogachev, 2007, Theorem 7.1.7), any γ ∈ P(

∏d
i=1 Xi) must be a Radon measure.

For the second part, note that

d∏
i=1

φi :

d∏
i=1

Xi →
d∏

i=1

Bi,

(
d∏

i=1

φi

)
(x1, . . . , xd) 7→

d∏
i=1

φi(xi)

is a norm bounded, continuous injection. Since
∏d

i=1 Bi is a Hausdorff space,
∏d

i=1 φi is a homeo-
morphism on compacts since continuous injections into Hausdorff spaces are homeomorphisms on
compacts (Rudin, 1953, Theorem 4.17). Let µ, ν ∈ P

(∏d
i=1 Xi

)
be two Radon measures such that

their pushforwards are the same
∏d

i=1 φi(µ) =
∏d

i=1 φi(ν), then for any compact C ⊆
∏d

i=1 Xi we
have µ(C) = ν(C) as

∏d
i=1 φi : C →

∏d
i=1 φi(C) is a homeomorphism. Since Radon measures

are characterized by their values on compacts, this implies that µ = ν. Hence the pushforward map
is injective.

Denote by K the image of
∏d

i=1 Xi under the mapping
∏d

i=1 φi in
∏d

i=1 Bi. Note that K is a
bounded Polish space. It is enough to show that the polynomials separate the points of P(K). To see
this, note that the polynomials form an algebra of continuous functions that separate the points of∏d

i=1 Bi, and when restricted to K they are bounded, since K is norm bounded. Since K is Polish,
any Borel measure is Radon, and we can apply the Stone-Weierstrass theorem for Radon measures
(Bogachev, 2007, Exercise 7.14.79) to get the assertion.

In what follows we will use the following index notation for linear functionals. Fix some tuple
i = (i1, . . . , id) ∈ Nd with deg(i) = m. Given separable Banach spaces B1 . . . ,Bd we use the
notation

B⊗i := B⊗i1
1 ⊗ · · · ⊗ B⊗id

d

5These monomials naturally extend the classical ones.
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and given an element x = (x1, . . . , xd) ∈
∏d

i=1 Bi we write xi : = x⊗i1
1 ⊗ · · · ⊗ x⊗id

d so that
xi ∈ B⊗i. If we have functions (φi)

d
i=1 such that φi : Xi → Bi on some Polish spaces X1, . . . ,Xd,

then we write

φ⊗i := φ⊗i1
1 ⊗ · · · ⊗ φ⊗id

d , φ⊗i :

d∏
i=1

Xi → B⊗i.

Given a collection of linear functionals F ∈
∏d

j=1

(
B⋆
j

)ij such that F = (f1, . . . , fd) we write

F⊗i := f1 ⊗ · · · ⊗ fd, F⊗i ∈
(
B⊗i

)⋆
.

Note the following trick: the monomials on
∏d

i=1 Bi are exactly functions of the form

x 7→ ⟨F⊗i, xi⟩

for F = (f1, . . . , fd), this will be used in the proofs. We can now restate and prove the our theorem.
Note that the cumulants here are defined like in Definition 4 which is a sensible definition even if the
feature maps are not associated to kernels.

Theorem 4 (Generalization of Theorem 2 and Theorem 3). Let X1, . . . ,Xd be Polish spaces and
φi : Xi → Bi be continuous, bounded and injective feature maps into separable Banach spaces Bi

for i = 1, . . . d. Let γ and η be probability measures on X1 × · · · × Xd. Then

1. γ = η if and only if κ(γ) = κ(η).

2. γ =
⊗d

i=1 γ|Xi
if and only if the cross cumulants vanish, that is κi(γ) = 0 for all i ∈ Nd

+.

Proof.
• Item 2: We want to show that the cross cumulants vanish if and only if γ =

⊗d
i=1 γ|Xi . By Lemma

5 it is enough to show that

Eγ

[
p
(
φ1(X1), . . . , φd(Xd)

)]
= E⊗d

i=1 γ|Xi

[
p
(
φ1(X1), . . . , φd(Xd)

)]
for any monomial function p. Let us take linear functionals F = (f1, . . . , fd) and note that

⟨F i, κi(γ)⟩ =
∑

π∈P (d)

cπEγi
π

[
f1(φ1(X1)) · · · fd(φd(Xd))

]
which is the classical cumulant of the vector-valued random variable(

(f1 ◦ φ1)(X1), . . . , (fd ◦ φd)(Xd)
)
,

where (X1, . . . , Xd) ∼ γ. Hence by classical results (Speed, 1983), all cross cumulants of
(
(f1 ◦

φ1)(X1), . . . , (fd ◦ φd)(Xd)
)

vanish if and only if the cross moments split, that is to say

Eγ

[
p
(
(f1 ◦ φ1)(X1), . . . , (fd ◦ φd)(Xd)

)]
= E⊗d

i=1 γ|Xi

[
p
(
(f1 ◦ φ1)(X1), . . . , (fd ◦ φd)(Xd)

)]
for any monomial p on Rd. Since f1, . . . , fd were arbitrary this holds for all monomials, which
shows the assertion.

• Item 1: By assumption κi(γ) = κi(η) for every i ∈ Nd; this implies that Eγp(φ1, . . . , φd) =
Eηp(φ1, . . . , φd) for any polynomial p, so we can apply Lemma 5.

Proposition 1 (Theorem 2 and Theorem 3). Let X1, . . . ,Xd be Polish spaces and ki : X 2
i → R be a

collection of bounded, continuous, point-separating kernels. Let γ and η be be probability measures
on X1 × · · · × Xd. Then

1. γ = η if and only if κk1,...,kd
(γ) = κk1,...,kd

(η).

2. γ =
⊗d

i=1 γ|Xi
if and only if κi

k1,...,kd
(γ) = 0 for all i ∈ Nd

+.
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Proof. We reduce the proof to the checking of the conditions of Theorem 4. Let φi denote
the canonical feature map of the kernel ki, and let Bi : = Hki be the RKHS associated to ki
(i ∈ {1, . . . , d}). For all i ∈ {1, . . . , d}, φi is (i) bounded by the boundedness of ki since
∥φi(x)∥2Hki

= ki(x, x) ≤ supx∈Xi
|ki(x, x)| < ∞, (ii) continuous by the continuity of ki (Stein-

wart and Christmann, 2008, Lemma 4.29), (iii) injective by the point-separating property of ki. The
separability of Hki

follows (Steinwart and Christmann, 2008, Lemma 4.33) from the separability
of Xi and the continuity of ki (i ∈ {1, . . . , d}). Note: Details on the expected kernel trick part of
Theorem 2 and Theorem 3 are provided in Section E.

D Additional experiments and details

Here we give additional details on the experiments that were performed, and discuss some further
experiments that did not fit into the main text.

Background on permutation testing. Permutation testing works by bootstrapping the distribution
of a test statistic under the null hypothesis. This allows the user to estimate confidence intervals
under the null, which is a powerful all-purpose way of doing so when analytic expressions are
unavailable. As an example, assume we have two probability measures γ, η on X with i.i.d. samples
x1, . . . , xN ∼ γ, y1, . . . , yN ∼ η. If the null hypothesis is that γ = η then we may set

(z1, . . . , z2N ) := (x1, . . . , xN , y1, . . . , yN )

so that for any permutation σ on 2N elements, we get two different set of of i.i.d. samples from
γ = η by using the empirical measures

γ̃σ := (zσ(1), . . . , zσ(N)), η̃σ := (zσ(N+1), . . . , zσ(2N))

and for any statistic S : P(X )2 → R, we may estimate S(γ, η) under the null by sampling from
S(γ̃σ, η̃σ). If the null hypothesis were true, we might expect S(γ, η) to lie in a region with high
probability of the permutation estimator, and we can use this as a criteria for rejecting the null. Under
fairly weak assumptions, this yields a test at the appropriate level (Chung and Romano, 2013).

Comparing a uniform and a mixture. Any uniform random variable over a symmetric interval
will have 0 mean and skewness, so a symmetric mixture only needs to match the variance. If X is a
50/50 mixture of U [a, b] and U [−a,−b] then

Var(X) =
2

3

(
b2 + ba+ a2

)
so if Y is distributed according to U [−c, c] then we only need to solve

b2 + ba+ a2 = c2

which is straightforward for a given a and c.

Computational complexity of estimators. The V-statistic for d(2) as written in Lemma 2 is
bottlenecked by the matrix multiplications. We may note however that for two matrices A,B it holds
that

Tr(A⊤B) = ⟨A ◦B⟩,

where ⟨·⟩ denotes the sum over elements and ◦ denotes the Hadamard product. We also note that for
for Hn = 1

n1n1
⊤
n we have

(
AHn

)
i,j

= 1
n

∑n
c=1 Ai,c. Using both of these tricks we may compute

both d(2) and CSIC without any matrix multiplications, which brings the computational complexity
down to O(N2) for both. For a comparison of actual computation time, see Fig. 6 and Fig. 7, where
the average computational times for out methods are compared to the KME and and HSIC for N
between 50 and 2000.

Type I error on the Seoul Bicycle data. The results when comparing the winter data to itself is
presented in Fig. 8. As we see the performance is similar for both estimators and lies between 5 and
10%.
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Figure 6: Average computational time in seconds for KME (red) and d(2) (blue) for sample size N
between 50 and 2000.
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Figure 7: Average computational time in seconds for HSIC (red) and CSIC (blue) for sample size N
between 50 and 2000.

Classical vs. kernelized cumulants. Using the same distributions as in the synthetic independence
testing experiment, we now compare X with Y 2

0.5 to contrast independence testing with classical
cumulants with their kernelized counterpart. The results are summarized in Table 1 where they
are displayed as the median value ± half the difference between the 75th and 25th percentile. We
consider every combination of classical vs. kernelized, variance vs. skewness, and two different
sample sizes. One can observe that the classical variance based test performs poorly compared to a
classical skewness test, the kernelized variance test is almost as powerful as the kernelized skewness
test, and in all cases the kernelized tests deliver higher power.

E Kernel trick computations

Here we show how to arrive at the expressions used for the V-statistics used in the experiments.
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Figure 8: Type I errors using MMD (red) and d(2) (blue) on the Seoul bicycle data set.
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Table 1: Comparison of classical and kernelized cumulants for independence testing with both
variance and skewness.

N=20 Variance Skewness

Classical 19%± 3.0% 56%± 3.5%
Rbf kernel 39%± 4.5% 59%± 3.0%

N=30 Variance Skewness

Classical 17%± 0.5% 68%± 1.0%
Rbf kernel 65%± 3.5% 79%± 1.5%

Given a real analytic function f(x, . . . , xd) =
∑

i∈Nd fix
i in m variables with nonzero radius of

convergence and Hilbert spaces H1, . . . ,Hd we may (formally) extend f to a function

f⊗ :

d∏
i=1

Hi → T, f⊗(x1, . . . , xd) =
∏
i∈Nd

fix
⊗i.

Moreover, if the Hilbert spaces are RKHSs then we have the following result.

Lemma 6 (Nonlinear kernel trick). For any collection of RKHSs H1, . . . ,Hd with feature maps
φi : Xi → Hi, assume that f and g are real analytic functions with radii of convergence r(f) and
r(g) such that max1≤i≤d supx∈Xi

|φi(x)| < min(r(f), r(g)). Then

⟨f⊗
(
φ1(x1), . . . , φd(xd)

)
, g⊗

(
φ1(y1), . . . , φd(yd)

)
⟩T =

∑
i∈Nd

figik1(x1, y1)
i1 . . . kd(xd, yd)

id .

Proof. Since the image of the φis lie inside the radius of convergence of f⊗ and g⊗ the power series
converge absolutely and we can write

⟨f⊗
(
φ⊗i(xi)

)
, g⊗

(
φ⊗i(yi)

)
⟩T = ⟨

∑
i∈Nd

fiφ
⊗i(xi),

∑
i∈Nd

giφ
⊗i(yi)⟩T

=
∑
i∈Nd

figi⟨φ⊗i(xi), φ⊗i(yi)⟩H⊗i =
∑
i∈Nd

figik1(x1, y1)
i1 . . . kd(xd, yd)

id ,

where H = H1 × · · · × Hd.

Using Lemma 6, we can choose kernels ki : X 2
i → R with associated RKHSs Hi and feature maps

φi and some i ∈ Nd with deg(i) = m. We make the observation that with X = (X1, . . . , Xd) ∼ γ,
Y = (Y1, . . . , Yd) ∼ η and k⊗i and H⊗i as in (4), one has

⟨κi(γ), κi(η)⟩H⊗i = ⟨
∑

π∈P (m)

cπEγi
π
φ⊗i(X i),

∑
τ∈P (m)

cτEηi
τ
φ⊗i(Y i)⟩H⊗i

=
∑

π,τ∈P (m)

cπcτ ⟨Eγi
π
φ⊗i(X i),Eηi

τ
φ⊗i(Y i)⟩H⊗i

=
∑

π,τ∈P (m)

cπcτEγi
π⊗ηi

τ
⟨φ⊗i(X i), φ⊗i(Y i)⟩H⊗i

=
∑

π,τ∈P (m)

cπcτEγi
π⊗ηi

τ
k⊗i((X1, . . . , Xm), (Y1, . . . , Ym)),

Since

∥κi(γ)∥2H⊗i = ⟨κi(γ), κi(γ)⟩H⊗i

∥κi(γ)− κi(η)∥2H⊗i = ⟨κi(γ), κi(γ)⟩H⊗i + ⟨κi(η), κi(η)⟩H⊗i − 2⟨κi(γ), κi(η)⟩H⊗i

one gets the expected kernel trick statements of Theorem 2 and Theorem 3.

We are now interested in explicitly computing the expression ∥κ(1,2)
k,ℓ (γ)∥2H⊗1

k ⊗H⊗2
ℓ

, ∥κ(2)
k (γ) −

κ
(2)
k (η)∥2H(1,1) and ∥κ(3)

k (γ) − κ
(3)
k (η)∥2H⊗3

k

, and their corresponding V-statistics. Recall that for
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a (w.l.o.g.) symmetric, measurable function h(z1, . . . , zm), the V-statistic of h with N samples
Z1, . . . , ZN is defined as

V(h;Z1, . . . , ZN ) := N−m
N∑

i1,...,im=1

h(Zi1 , . . . , Zim).

Under fairly general conditions, the V-statistic converges in distribution to E[h(Z1, . . . , Zm)] and a
well-developed theory describes this convergence (Van der Waart, 2000; Serfling, 1980; Arcones and
Giné, 1992).

Example E.1 (Estimating ∥κ(2)
k (γ) − κ

(2)
k (η)∥2H(1,1)). Let X,X ′, X ′′, X ′′′ denote independent

copies of γ and Y, Y ′, Y ′′, Y ′′′ denote independent copies of η. The full expression for ∥κ(2)
k (γ)−

κ
(2)
k (η)∥2H(1,1) is

∥κ(2)
k (γ)− κ

(2)
k (η)∥2H(1,1) = Ek(X,X ′)k(X ′′, X ′′′) + Ek(Y, Y ′)k(Y ′′, Y ′′′) (12)

+ Ek(X,X ′)2 + Ek(Y, Y ′)2

+ 2Ek(X,Y )k(X ′, Y ) + 2Ek(X,Y )k(X,Y ′)

− 2Ek(X,Y )k(X ′, Y ′)− 2Ek(X,Y )2

− 2Ek(X,X ′)k(X,X ′′)− 2Ek(Y, Y ′)k(Y, Y ′′).

Given samples (xi)
N
i=1, (yi)Mi=1 from γ and η respectively the corresponding V statistic is

1

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xκ, xl) +
1

M4

M∑
i,j,κ,l=1

k(yi, yj)k(yκ, yl) (13)

+
1

N2

N∑
i,j=1

k(xi, xj)
2 +

1

M2

M∑
i,j=1

k(yi, yj)
2

+
2

N2M

N∑
i,κ=1

M∑
j=1

k(xi, yj)k(xκ, yj) +
2

NM2

N∑
i=1

M∑
j,κ=1

k(xi, yj)k(xi, yκ)

− 2

N2M2

N∑
i,l=1

M∑
j,κ=1

k(xi, yj)k(xκ, yl)−
2

NM

N∑
i=1

M∑
j=1

k(xi, yj)
2

− 2

N3

N∑
i,j,κ=1

k(xi, xj)k(xi, xκ)−
2

M3

M∑
i,j,κ=1

k(yi, yj)k(yi, yκ).

Let us define the Gram matrices Kx = [k(xi, xj)]
N
i,j=1 ∈ RN×N , Ky = [k(yi, yj)]

M
i,j=1 ∈ RM×M ,

Kx,y = [k(xi, yj)]
N,M
i,j=1 and let HN = 1

N 1N1⊤
N ∈ RN×N , HM = 1

M 1M1⊤
M ∈ RM×M be the

centering, then (13) can be rewritten as

1

N2
Tr(HNKxHNKx) +

1

M2
Tr(HMKyHMKy) +

1

N2
Tr(K2

x) +
1

M2
Tr(K2

y)

+
2

NM
Tr(KxyHNKxy) +

2

NM
Tr(KxyHMK⊤

xy)−
2

NM
Tr(HMK⊤

xyHNKxy)−
2

NM
Tr(K2

xy)

− 2

N2
Tr(KxHNKx)−

2

M2
Tr(KyHMKy)

which simplifies to

1

N2
Tr
[
(Kx(I−HN ))2

]
+

1

M2
Tr
[
(Ky(I−HM ))2

]
− 2

NM
Tr
[
Kxy(I−HM )K⊤

xy(I−HN )
]
.

This estimator can be computed in quadratic time.

Example E.2 (Estimating ∥κ(1,2)
k,ℓ (γ)∥2H⊗1

k ⊗H⊗2
ℓ

). Let k denote the kernel on X1 and ℓ denote the

kernel on X2. Let (X,Y ), (X ′, Y ′), (X ′′, Y ′′), (X(3), Y (3)), (X(4), Y (4)), (X(5), Y (5)) denote in-
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dependent copies of γ ∈ P(X1 ×X2). The full expression for ∥κ(1,2)
k,ℓ (γ)∥2H⊗1

k ⊗H⊗2
ℓ

is

Ek(X,X ′)k(X,X ′)ℓ(Y, Y ′)− 4Ek(X,X ′)k(X,X ′′)ℓ(Y, Y ′)

− 2Ek(X,X ′)k(X,X ′)ℓ(Y, Y ′′) + 4Ek(X,X ′)k(X,X ′′)ℓ(Y, Y (3))

+ 2Ek(X,X ′)k(X ′′, X(3))ℓ(Y, Y ′) + 2Ek(X,X ′)k(X ′′, X(3))ℓ(Y, Y (3))

+ 4Ek(X,X ′)k(X ′′, X ′)ℓ(Y, Y (3)) + Ek(X,X ′)k(X,X ′)ℓ(Y ′′, Y (3))

− 8Ek(X,X ′)k(X ′′, X(3))ℓ(Y (4), Y ′)− 4Ek(X,X ′)k(X ′′, X ′)ℓ(Y (4), Y (3))

+ 4Ek(X,X ′)k(X ′′, X(3))ℓ(Y (4), Y (5)).

Given samples (xi, yi)
N
i=1 from γ the corresponding V-statistic for this expression is

1

N2

N∑
i,j=1

k(xi, xj)k(xi, xj)ℓ(yi, yj)−
4

N3

N∑
i,j,κ=1

k(xi, xj)k(xi, xκ)ℓ(yi, yj)

− 2

N3

N∑
i,j,κ=1

k(xi, xj)k(xi, xj)ℓ(yi, yκ) +
4

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xi, xκ)ℓ(yi, yl)

+
2

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xκ, xl)ℓ(yi, yj) +
2

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xκ, xl)ℓ(yi, yl)

+
4

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xκ, xj)ℓ(yi, yl) +
1

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xi, xj)ℓ(yκ, yl)

− 8

N5

N∑
i,j,κ,l,m=1

k(xi, xj)k(xκ, xl)ℓ(ym, yj)−
4

N5

N∑
i,j,κ,l,m=1

k(xi, xj)k(xκ, xj)ℓ(ym, yl)

+
4

N6

N∑
i,j,κ,l,m,n=1

k(xi, xj)k(xκ, xl)ℓ(ym, yn).

Using the shorthand notation K = Kx,L = Ly and H = HN and denoting by ◦ the Hadamard
product [A ◦B]i,j = Ai,jBi,j and ⟨·⟩ the sum over all elements of a matrix ⟨A⟩ =

∑N
i,j=1 Ai,j , the

V-statistic above can be written in the simpler form

1

N2

〈
K ◦K ◦ L− 4K ◦KH ◦ L− 2K ◦K ◦ LH

+ 4KH ◦K ◦ LH+ 2K ◦ L
〈

K

N2

〉
+ 2KH ◦HK ◦ L

+ 4K ◦HK ◦ LH+K ◦K
〈

L

N2

〉
− 8K ◦ LH

〈
K

N2

〉
− 4K ◦HK

〈
L

N2

〉
+ 4

〈
K

N2

〉2

L

〉
.

Again this estimator can be computed in quadratic time.

Example E.3 (Estimating ∥κ(3)
k (γ)− κ

(3)
k (η)∥2H⊗3

k

). In order to estimate d(3)(γ, η) we note that one
can write

∥κ(3)
k (γ)− κ

(3)
k (η)∥2H⊗3

k

= ∥κ(3)
k (γ)∥2H⊗3

k

+ ∥κ(3)
k (η)∥2H⊗3

k

− 2⟨κ(3)
k (γ), κ

(3)
k (η)⟩H⊗3

k
.
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We can estimate the first two terms like in Example E.2, and the third term can be expressed as

⟨κ(3)
k (γ), κ

(3)
k (η)⟩H⊗3

k
= Ek(X,Y )3 − 3Ek(X,Y )2k(X,Y ′)2

− 3Ek(X,Y )2k(X ′, Y )2 + 6Ek(X,Y )k(X,Y ′)k(X ′, Y )

+ 3Ek(X,Y )2k(X ′, Y ′) + 2Ek(X,Y )k(X ′, Y )k(X ′′, Y )

+ 2Ek(X,Y )k(X,Y ′)k(X,Y ′′)− 6Ek(X,Y )k(X,Y ′)k(X ′, Y ′′)

− 6Ek(X,Y )k(X ′, Y )k(X ′′, Y ′) + 4Ek(X,Y )k(X ′, Y ′)k(X ′′, Y ′′).

For simplicity we will assume that we have an equal number of samples (N) from both measures
(xi)

N
i=1 ∈ γ and (yi)

N
i=1 ∈ η. The V-statistic for ⟨κ(3)

k (γ), κ
(3)
k (η)⟩H⊗3

k
can be expressed as

1

N2

N∑
i,j=1

k(xi, yj)
3 − 3

N3

N∑
i,j,κ=1

k(xi, yj)
2k(xi, yκ)

− 3

N3

N∑
i,j,κ=1

k(xi, yj)
2k(xκ, yi) +

6

N4

N∑
i,j,κ,l=1

k(xi, yj)k(xi, yκ)k(xl, yj)

+
3

N4

N∑
i,j,κ,l=1

k(xi, yj)
2k(xκ, yl) +

2

N4

N∑
i,j,κ,l=1

k(xi, yj)k(xκ, yj)k(xl, yj)

+
2

N4

N∑
i,j,κ,l=1

k(xi, yj)k(xi, yκ)k(xi, yl)−
6

N5

N∑
i,j,κ,l,m=1

k(xi, yj)k(xi, yκ)k(xl, ym)

− 6

N5

N∑
i,j,κ,l,m=1

k(xi, yj)k(xκ, yj)k(xl, ym) +
4

N6

N∑
i,j,κ,l,m,n=1

k(xi, yj)k(xκ, yl)k(xm, yn).

Using the notation Kxy = [k(xi, yj)]
N
i,j=1, this estimator simplifies to

1

N2

〈
Kxy ◦Kxy ◦Kxy − 3Kxy ◦Kxy ◦HKxy

− 3Kxy ◦Kxy ◦KxyH+ 6Kxy ◦KxyH ◦HKxy

+ 3Kxy ◦Kxy

〈
Kxy

N2

〉
+ 2Kxy ◦HKxy ◦HKxy

+ 2Kxy ◦KxyH ◦KxyH− 6Kxy ◦KxyH

〈
Kxy

N2

〉
− 6Kxy ◦HKxy

〈
Kxy

N2

〉
+ 4

〈
K

N2

〉2

Kxy

〉
.

We mention also that the first two terms ∥κ(3)
k (γ)∥2H⊗3

k

, ∥κ(3)
k (η)∥2H⊗3

k

can be computed a little
more simply than in Example E.2 since the expressions have more symmetry, using the notation
Kx = [k(xi, xj)]

N
i,j=1 we can write down the V-statistic for ∥κ(3)

k (γ)∥2H⊗3
k

as

1

N2

〈
Kx ◦Kx ◦Kx − 6Kx ◦KxH ◦Kx

+ 4KxH ◦Kx ◦KxH+ 3Kx ◦Kx

〈
Kx

N2

〉
+ 6KxH ◦HKx ◦Kx − 12Kx ◦HKx

〈
Kx

N2

〉
+ 4

〈
Kx

N2

〉2

Kx

〉
with a similar expression for ∥κ(3)

k (η)∥2H⊗3
k

. The estimator can be computed in quadratic time.

26


