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Problem definition

We are are interested in kernel regression with several pointwise constraints
over derivatives. Given samples (xn, yn)n∈[N] ∈ (X × R)N , a loss L : (X ×
R× R)N → R , a regularizer Ω : R+ → R, for x ∈ X ⊂ Rd , f ∈ Cs(X,R),

f̄ ∈ arg min
f ∈ Fk

L(f ) = L
(

(xn, yn, f (xn))n∈[N]

)
+ Ω (‖f ‖k)

s.t. bi ≤ Di f (x), ∀ x ∈ Ki , ∀i ∈ [I] = [[1, I]].

where Fk is a Hilbert space of real-valued functions (RKHS) over X, Di is
a differential operator (D =

∑
j γj∂

rj ), bi ∈ R is a bound, Ki is a compact
set (e.g. [0,T ], [0, 1]d).

For non-finite K, we have an infinite number of constraints!
↪→ No representer theorem!

How can we make the optimization problem computationally tractable?
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Shape constraints, ex:

Shape constraints = priors on the form of the solution of the problem
↪→ compensates lack of samples or excessive noise
↪→ incorporates physical constraints
They are crucial if the output model is then used as an input for safety-
critical tasks (e.g. path-planning) or for theoretical analysis (e.g. density
estimation). Many shape constraints are defined pointwise (0 ≤ Df (x)):

Statistics [Koenker, 2005]: nonnegative densities, noncrossing quantiles

Economics [Matzkin, 1991]: increasing and concave utility functions

Control/Path-planning [Egerstedt, 2009]: state and control constraints

Supply chain [Simchi-Levi et al., 2014], Pricing models: supermodularity
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Dealing with an infinite number of constraints: an overview

f̄ ∈ arg min
f ∈Fk

L(f ) s.t. ”bi ≤ Di f (x), ∀ x ∈ Ki , ∀i ∈ [I]”, Ki non-finite

Relaxing
Discretize constraint at “virtual“ samples {x̃m,i}m≤M ⊂ Ki ,
↪→ no guarantees out-of-samples [Agrell, 2019, Takeuchi et al., 2006]

Add constraint-inducing penalty, Ωcons(f ) = −λ
∫
Ki

min(0,Di f (x)−bi )dx
↪→ no guarantees, changes the problem objective [Brault et al., 2019]

Tightening
Replace Fk by algebraic subclass of functions satisfying the constraints
↪→ hard to stack constraints, Φ(x)>AΦ(x), Sum-Of-Squares [Hall, 2018]

Use only spaces Fk s.t. constraints have a “simple“ writing, e.g. splines
↪→ highly restricted functions classes [Papp and Alizadeh, 2014]

Our solution: discretize Ki but replace bi using RKHS geometry
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Example: 1D monotonic kernel ridge regression (KRR)
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min
f ∈Fk

1
N

N∑
n=1
|yn − f (xn)|2 + λ ‖f ‖2Fk

s.t. 0 ≤ f ′(x), ∀x ∈ [0, 2]

Unconstrained KRR
vs

Second-Order Cone
(SOC) constrained

SOC comes from adding a buffer to a discretization (interior solution)

“b ≤ Df (x), ∀x ∈ K“⇐ “b + ηm‖f (·)‖ ≤ Df (x̃m), ∀m ∈ [M]“

How to choose ηm?
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Reproducing kernel Hilbert spaces (RKHS) in one slide
A RKHS (Fk , 〈·, ·〉Fk ) is a Hilbert space of real-valued functions over a set
X if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

∃ k : X× X→ R s.t. kx (·) = k(x , ·) ∈ Fk and f (x) = 〈f (·), kx (·)〉Fk

k is s.t. ∃Φk : X→ Fk s.t. k(x , y) = 〈Φk(x),Φk(y)〉Fk

k is s.t. G = [k (xi , xj)]ni ,j=1 < 0 and Fk := span({kx (·)}x∈X)

ex: kσ(x , y) = exp
(
−‖x − y‖2Rd/(2σ2)

)
klin(x , y) = 〈x , y〉Rd

There is a one-to-one correspondence between kernels k and RKHSs
(Fk , 〈·, ·〉Fk ). Changing X or 〈·, ·〉Fk changes the kernel k.

if X ⊂ Rd is contained in closure of its interior, k ∈ Cs,s(X× X,R), D a
differential operator of order at most s, then kernel trick for derivatives:

Dxk(x , ·) ∈ Fk ; Df (x) = 〈f (·),Dxk(x , ·)〉Fk
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Back to Second-Order Cone Constraints

Take δ > 0 and x s.t. ‖x − x̃m‖ ≤ δ

Df (x) = Df (x̃m) + 〈f (·),Dxk(x , ·)− Dxk(x̃m, ·)〉k
Df (x) ≥ Df (x̃m)− ‖f (·)‖k‖Dxk(x , ·)− Dxk(x̃m, ·)‖k
Df (x) ≥ Df (x̃m)− ‖f (·)‖k sup

{x | ‖x−x̃m‖≤δ}
‖Dxk(x , ·)− Dxk(x̃m, ·)‖k︸ ︷︷ ︸

ηm(δ)

For smooth kernels, δ → 0 gives ηm(δ)→ 0.

Shift-invariant kernel (k(x , y) = k0(x − y)) gives

η(δ) = sup
u∈B‖·‖X (0,δ)

√
|2DxDy k0(0)− 2DxDy k0 (u)|

Other buffers are possible (e.g. constant), why choose “ηm‖f (·)‖“?
↪→ This choice comes from a geometrical interpretation.
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Support Vector Machine (SVM) is about separating red and green points
by blue hyperplane.
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Using the nonlinear embedding ΦD : x 7→ Dxk(x , ·), the idea is the same.
Consider only the green points, it looks like one-class SVM.
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The green points are now samples of a compact set K.
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The image ΦD(K) looks ugly...
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The image ΦD(K) looks ugly, can we cover it by balls? How to choose η?
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First cover K ⊂
⋃
{x̃m + δB}, and then look at the images ΦD({x̃m + δB})
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Cover the ΦD({x̃m + δB}) with tiny balls! This is how SOC was defined.
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Main theorem
fη ∈ arg min

f ∈ Fk
L(f ) = L

(
(xn, yn, f (xn))n∈[N]

)
+ Ω (‖f ‖k)

s.t. bi + ηi ,m‖f (·)‖k ≤ Di f (x̃m,i ), ∀m ∈ [Mi ], ∀i ∈ [I].

if Ω(·) is strictly increasing, then

Theoretical guarantees [Aubin-Frankowski and Szabó, 2020]
i) The finite number of SOC constraints is tighter than the infinite

number of affine constraints.
ii) Representer theorem (optimal solutions have a finite expression)

fη =
∑

i∈[I],m∈[Mi ] ãi ,m,qDi ,xk (x̃i ,m, ·) +
∑

n∈[N] an,qk(xn, ·)
iii) If L is µ-strongly convex, we have bounds: computable/theoretical

‖fη − f̄ ‖k ≤ min

√2(L(fη)− L(fη=0))
µ

,

√
Lf̄ ‖η‖∞

µ
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Application: Joint Quantile Regression (JQR)

fτ (x) conditional quantile over (X ,Y ): P(Y ≤ fτ (x)|X = x) = τ ∈]0, 1[.
Estimation through convex optimization over “pinball loss“ lτ (·) (i.e. tilted
absolute value [Koenker, 2005]).

Joint quantile regression with non-crossing constraints, over (fq)q∈[Q]:

L (f1, . . . fQ) = 1
N
∑

q∈[Q]

∑
n∈[N]

lτq (yn − fq(xn)) + λf
∑

q∈[Q]
‖fq‖2k

s.t. fq+1(x) ≥ fq(x), ∀q ∈ [Q − 1], ∀ x ∈ [min xn,max xn]d .

Known fact: quantile functions can cross when estimated independently.

Can we pair the non-crossing constraint with other physical requirements?
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Joint quantile regression (JQR): airplane data

Airplane trajectories at takeoff have increasing altitude.
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JQR with monotonic con-
straint over [xmin, xmax]:

Increasing quantiles
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non-crossing

Two shape constraints jointly handled with 15k samples.
Works with higher dimensions too!
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Joint quantile regression (JQR): Engel’s law

Engel’s law (1857): “As income rises, the proportion of income spent on
food falls, but absolute expenditure on food rises.“
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Priors have a great effect on the shape of solutions!
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Kernel ridge regression (KRR): trajectory reconstruction
Very noisy GPS data: six non-overtaking cars in a traffic jam
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KRR with monotonic con-
straint over [tmin, tmax]:

Forward trajectories also
maintain

security distance

(In Kernel Regression for Vehicle Trajectory Reconstruction under Speed and
Inter-vehicular Distance Constraints, PCAF and Nicolas Petit and Zoltán Szabó
IFAC World Congress 2020)
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Teaser slide

This approach works as well for
Other compact coverings than balls

SDP constraints (e.g. convexity for d ≥ 2): 0 4 Hess(f )(x)

Vector-valued functions f : X→ RQ

Other applications: finance, control theory, ...

Control: Take Fk to be a Hilbert space of trajectories [0,T ]→ RQ

min
x(·) ∈ Fk

g(x(T )) + ‖x(·)‖2k

s.t. x(0) = x0,
ci (t)>x(t) ≤ di (t), ∀ t ∈ [0,T ], ∀i ∈ [I].
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Conclusion/Take-home message

tightening intractable constraints is the only way to have guarantees

compact coverings in infinite dimensional spaces can be useful

See Hard Shape-Constrained Kernel Machines, PCAF and Zoltán Szabó,
June 2020, https://arxiv.org/abs/2005.12636
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Appendix: JQR performance over UCI datasets

PDCD = Primal-Dual Coordinate Descent [Sangnier et al., 2016],
JQR with parallel/heteroscedatic quantile penalization (see also ITL
[Brault et al., 2019] for noncrossing inducer)
mean ± std of 100×value of the pinball loss (smaller is better)

Dataset d N PDCD SOC

engel 1 235 48 ± 8 53 ± 9
GAGurine 1 314 61 ± 7 65 ± 6
geyser 1 299 105 ± 7 108 ± 3
mcycle 1 133 66 ± 9 62 ± 5
ftcollinssnow 1 93 154 ± 16 148 ± 13
CobarOre 2 38 159 ± 24 151 ± 17
topo 2 52 69 ± 18 62 ± 14
caution 2 100 88 ± 17 98 ± 22
ufc 3 372 81 ± 4 87 ± 6
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Appendix: KRR time computation with increasing number
of virtual points M
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Appendix: KRR performance with increasing number of
virtual points M
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